- Convergence absolue
-
Pour les articles homonymes, voir Absolu.
En mathématiques, une série numérique réelle ou complexe converge absolument si, par définition, la série des valeurs absolues (ou des modules) est convergente. Cette définition peut être étendue aux séries à valeurs dans un espace vectoriel normé et complet, soit un espace de Banach.
Lorsqu'elle est satisfaite, cette condition est suffisante pour assurer la convergence de la série elle-même.
Par analogie, l’intégrale d’une fonction à valeurs réelles ou complexes converge absolument si, par définition, l'intégrale de la valeur absolue (ou du module) de la fonction est convergente (fonction dans L1).
La convergence absolue des séries ou des intégrales est étroitement liée à la sommabilité (des familles ou des fonctions) : elle implique des propriétés plus fortes que la simple convergence.Sommaire
Série numérique absolument convergente
Une série à termes réels ou complexes converge absolument quand la série de terme général | an | converge. Dans ce cas, la série converge elle aussi et l'inégalité triangulaire se généralise en
Si la série est convergente, mais non absolument convergente, elle est dite semi-convergente.
- Exemple : la série harmonique alternée est semi-convergente.
Comportement des séries à termes réels
Dans le cas où on a affaire à une série de réels, le théorème précédent possède une démonstration élémentaire, qui apporte des informations supplémentaires sur les comportements possibles.
Si les termes an de la série sont des réels, on peut séparer les termes positifs et négatifs. Il faut considérer pour cela les termes partie positive et partie négative du terme an
Ces deux termes sont positifs, l'un est nul, et l'autre égal à la valeur absolue de an. De sorte que
Les séries et étant à termes positifs, leur suite des sommes partielles est croissante ; elle converge ou tend vers l'infini. Convergence absolue et semi-convergence peuvent être formulées à l'aide de ces deux séries.
- Lorsque la série converge absolument, par comparaison de séries positives, les séries et convergent toutes deux, donc par linéarité la série aussi.
- Lorsque la série est semi-convergente, nécessairement les deux séries et divergent (chacune a une somme infinie). La convergence se fait donc par compensation entre les termes positifs et négatifs.
La propriété « absolue convergence implique convergence » peut ensuite être étendue aux séries à valeurs complexes en séparant de la même façon parties réelle et imaginaire.
Propriétés des séries absolument convergentes
Si une série à termes réels ou complexes est absolument convergente, elle jouit des propriétés particulières suivantes, valables pour les sommes finies, mais généralement fausses pour les séries :
- Généralisation de la commutativité : la convergence et la valeur de la somme ne dépendent pas de l'ordre des termes. Ainsi, si σ est une permutation de , la relation suivante est satisfaite :
- Si la série est seulement semi-convergente, le théorème de Riemann montre qu'un changement de l'ordre des termes peut conduire à une série divergente, ou à une série convergente de somme arbitrairement choisie.
- Généralisation de la distributivité : le produit de Cauchy de deux séries absolument convergentes converge, en satisfaisant la relation
Une autre façon d'obtenir ces propriétés pour des sommes infinies est de considérer la notion de famille sommable, très voisine de la propriété d'absolue convergence pour les séries numériques.Extension aux séries à valeurs vectorielles
Considérons le cadre plus vaste d'un espace vectoriel normé E. Une série à termes vectoriels converge absolument lorsque la série de terme général converge. Sans autre précision, rien ne permet d'affirmer qu'une limite existe dans E[1].
Lorsque l'espace vectoriel E est complet, la convergence absolue implique non seulement l'existence d'une limite dans E, mais elle fournit encore une condition suffisante de convergence : si la série converge absolument, elle converge et
Cette propriété découle du critère de Cauchy relatif à la convergence des suites.
Il s'agit en fait d'une équivalence : si E est un espace vectoriel normé tel que toute série absolument convergente converge dans E, alors E est complet.
Intégrale absolument convergente
De même, une intégrale:
converge absolument si l'intégrale de sa valeur absolue correspondante est finie:
Notes (et références)
- complet. Si E est le -espace vectoriel , la convergence a lieu dans , mais pas nécessairement dans E qui n'est pas
Articles connexes
Wikimedia Foundation. 2010.