- Centre (algèbre)
-
En mathématiques, plus particulièrement en algèbre générale, le centre d'une structure algébrique est l'ensemble des éléments de cette structure qui commutent avec tous les autres éléments.
Sommaire
Groupes
Le centre d'un groupe G est l'ensemble des éléments de G qui commutent avec tous les éléments de G. On le note Z(G) :
Z(G) est un sous-groupe de G, abélien, distingué et caractéristique.
Anneaux
Soit ( A , + , · ) un anneau .
Le centre de ( A , + , · ) est le sous-ensemble de A formé par tous les éléments x de A tels que x · r = r · x pour tout r de A .
Le centre de A est un sous-anneau de A, et est commutatif. Si, de plus, ce centre est un corps, alors A est une algèbre sur son propre centre.
Corps
Soit ( K , + , · ) un corps gauche.
Le centre de ( K , + , · ) est le sous-ensemble de K formé par tous les éléments x de K tels que x · r = r · x pour tout r de K .
Le centre de K est un sous-corps commutatif de K . Par conséquent K est une algèbre sur son propre centre.
Algèbres
Le centre d'une algèbre E est constitué de tous les éléments x de E tels que x · a = a · x pour tout a de E.
Le centre d'une algèbre de Lie L est formé de tous les éléments x de L tels que [x,a] = 0 pour tout a de L. Il s'agit également d'un idéal de L.
Liens internes
Wikimedia Foundation. 2010.