Topologie triviale

Topologie triviale

Topologie grossière

En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l'ensemble vide et l'espace lui-même.

Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble. Intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.

Définition

Soit X un ensemble. L'ensemble {X, Ø} définit une topologie sur X appelée topologie grossière.

Propriétés

La topologie grossière est la topologie possédant le moins d'ouverts qu'il soit possible de définir sur un ensemble X, la définition d'une topologie supposant précisément que X et l'ensemble vide font partie de ces ouverts.

Parmi les autres propriétés d'un tel espace topologique X :

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Topologie grossi%C3%A8re ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Topologie triviale de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Topologie grossiere — Topologie grossière En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l ensemble vide et l espace lui même. Cette topologie est la moins fine de toutes les… …   Wikipédia en Français

  • Topologie grossière — En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l ensemble vide et l espace lui même. Cette topologie est la moins fine de toutes les topologies qu il est… …   Wikipédia en Français

  • TOPOLOGIE - Topologie différentielle — La topologie différentielle, que l’on devrait plutôt appeler «topologie des variétés », est une discipline mathématique assez ancienne par les problèmes qu’elle cherche à résoudre: ils étaient presque tous posés au début du siècle; mais ses… …   Encyclopédie Universelle

  • TOPOLOGIE - Topologie algébrique — Inventée au début du XXe siècle pour résoudre des problèmes géométriques, la topologie algébrique connut un grand développement grâce à l’introduction de constructions algébriques de plus en plus abstraites. Pour clarifier l’exposé, on a… …   Encyclopédie Universelle

  • Indiskrete Topologie — topologischer Raum berührt die Spezialgebiete Mathematik Topologie ist Spezialfall von Mengensystem umfasst als Spezialfälle …   Deutsch Wikipedia

  • Ouvert (topologie) — Pour les articles homonymes, voir Ouverture. En mathématiques, et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous ensemble d un espace topologique qui… …   Wikipédia en Français

  • Algebraische Topologie — Die Algebraische Topologie ist ein Teilgebiet der Mathematik, das topologische Räume mit Hilfe der Algebra untersucht. Sie ist eine Disziplin der Topologie. Inhaltsverzeichnis 1 Aufgabenstellung 2 Methodik 3 Historische Entwicklung …   Deutsch Wikipedia

  • Sphère (topologie) — Pour les articles homonymes, voir Sphère (homonymie). En topologie, une sphère est une généralisation de la notion de sphère géométrique. Il s agit d un espace topologique homéomorphe à l une des hypersphères, c est à dire l ensemble des points à …   Wikipédia en Français

  • FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… …   Encyclopédie Universelle

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”