Topologie triviale
- Topologie triviale
-
Topologie grossière
En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l'ensemble vide et l'espace lui-même.
Cette topologie est la moins fine de toutes les topologies qu'il est possible de définir sur un ensemble. Intuitivement, tous les points de l'espace topologique ainsi créé sont « groupés ensemble » et ne peuvent pas être distingués du point de vue topologique.
Définition
Soit X un ensemble. L'ensemble {X, Ø} définit une topologie sur X appelée topologie grossière.
Propriétés
La topologie grossière est la topologie possédant le moins d'ouverts qu'il soit possible de définir sur un ensemble X, la définition d'une topologie supposant précisément que X et l'ensemble vide font partie de ces ouverts.
Parmi les autres propriétés d'un tel espace topologique X :
- Les seuls fermés sont l'ensemble vide et X.
- La seule base possible de la topologie grossière sur X est {X}.
- Si X est non vide et de cardinal supérieur ou égal à deux, ce n'est pas un espace de Kolmogorov, ni un espace de Hausdorff.
- X est en revanche régulier, complètement régulier, normal et complètement normal.
- N'étant pas de Hausdorff, X n'est ni une topologie d'ordre, ni métrisable.
- X est compact et donc paracompact, de Lindelöf et localement compact.
- Toute fonction dont l'ensemble de définition est un espace topologique et l'ensemble d'arrivée X est continue.
- X est connexe.
- Tout point de X admet une base dénombrable, X est à base dénombrable et séparable.
- Tout sous-espace de X possède la topologie grossière.
- Tout espace quotient de X possède la topologie grossière.
- Tout espace produit d'espace topologiquement grossiers, muni de la topologie produit ou de la topologie des boîtes, possède la topologie grossière.
- Toute suite de X converge vers tout point de X. En particulier, toute suite possède une sous-suite convergente (la suite elle-même) et X est donc séquentiellement compact.
- L'intérieur de tout sous-ensemble de X, à l'exception de X lui-même, est vide.
- L'adhérence de tout sous-ensemble non-vide de X est X. Tout sous-ensemble non-vide de X est donc dense dans X, une propriété qui caractérise les espaces topologiquement grossiers.
- Si S est un sous-ensemble de X ayant au moins deux points, tout élément de X est un point d'accumulation de S. Si S est formé d'un seul point, ses points d'accumulation sont exactement les autres points de X.
- X est un espace de Baire.
- Deux espaces grossièrement topologiques sont homéomorphes si et seulement s'ils ont même cardinalité.
Voir aussi
- Portail des mathématiques
Catégorie : Topologie générale
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Topologie triviale de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Topologie grossiere — Topologie grossière En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l ensemble vide et l espace lui même. Cette topologie est la moins fine de toutes les… … Wikipédia en Français
Topologie grossière — En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l ensemble vide et l espace lui même. Cette topologie est la moins fine de toutes les topologies qu il est… … Wikipédia en Français
TOPOLOGIE - Topologie différentielle — La topologie différentielle, que l’on devrait plutôt appeler «topologie des variétés », est une discipline mathématique assez ancienne par les problèmes qu’elle cherche à résoudre: ils étaient presque tous posés au début du siècle; mais ses… … Encyclopédie Universelle
TOPOLOGIE - Topologie algébrique — Inventée au début du XXe siècle pour résoudre des problèmes géométriques, la topologie algébrique connut un grand développement grâce à l’introduction de constructions algébriques de plus en plus abstraites. Pour clarifier l’exposé, on a… … Encyclopédie Universelle
Indiskrete Topologie — topologischer Raum berührt die Spezialgebiete Mathematik Topologie ist Spezialfall von Mengensystem umfasst als Spezialfälle … Deutsch Wikipedia
Ouvert (topologie) — Pour les articles homonymes, voir Ouverture. En mathématiques, et plus particulièrement en topologie générale, un ensemble ouvert, aussi appelé une partie ouverte ou, plus fréquemment, un ouvert, est un sous ensemble d un espace topologique qui… … Wikipédia en Français
Algebraische Topologie — Die Algebraische Topologie ist ein Teilgebiet der Mathematik, das topologische Räume mit Hilfe der Algebra untersucht. Sie ist eine Disziplin der Topologie. Inhaltsverzeichnis 1 Aufgabenstellung 2 Methodik 3 Historische Entwicklung … Deutsch Wikipedia
Sphère (topologie) — Pour les articles homonymes, voir Sphère (homonymie). En topologie, une sphère est une généralisation de la notion de sphère géométrique. Il s agit d un espace topologique homéomorphe à l une des hypersphères, c est à dire l ensemble des points à … Wikipédia en Français
FORME — L’histoire du concept de forme et des théories de la forme est des plus singulières. Nous vivons dans un monde constitué de formes naturelles. Celles ci sont omniprésentes dans notre environnement et dans les représentations que nous nous en… … Encyclopédie Universelle
Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen … Deutsch Wikipedia