Théorème fondamental de la théorie de galois

Théorème fondamental de la théorie de galois

Théorème fondamental de la théorie de Galois

En mathématiques et plus précisément en algèbre, le théorème fondamental de la théorie de Galois établit une correspondance entre la structure de corps et le groupe de Galois.

Ce théorème permet l'analyse de la structure de corps d'une bonne extension, c’est-à-dire d'une extension algébrique séparable, normale et finie. Dans le cas d'un corps parfait tout polynôme admet une extension de cette nature, c'est le corps de décomposition de ses racines.

Ce théorème possède beaucoup d'applications, une condition nécessaire et suffisante pour qu'une équation polynomiale admette une solution par radical en est un exemple. Ce résultat est souvent appelé théorème d'Abel-Ruffini.

Sommaire

Énoncé du théorème

Article détaillé : Extension de Galois.

Soit L une extension de Galois de dimension finie sur K et G son groupe de Galois. Soit H un sous-groupe de G et LH l'ensemble contenant tous les éléments de L invariant par chaque élément de H. Alors:

LH est un sous-corps de L, L est une extension galoisienne de LH et H est le groupe de Galois de l'extension L de LH.

L'application de l'ensemble des sous-groupes du groupe G dans les sous-corps de L qui à chaque sous-groupe H associe LH est une bijection.

L'extension LH de K est galoisienne si et seulement si H est un sous-groupe distingué de G. Alors le groupe de Galois de LH est isomorphe au groupe quotient G/H.

Démonstration

Propositions démontrées dans d'autres articles

  • Lemme d'Artin: Soit L un corps et G un groupe fini d'automorphisme de corps de L. Alors l'ensemble K des éléments l laissé invariant par chaque élément de G est un sous-corps. De plus, L est une extension galoisienne de K.

Cette proposition est démontrée dans le paragraphe propriété des extensions de Galois.

  • L'ensemble des éléments de L laissés invariants par tous les membres de G est K.

Cette proposition est démontrée dans le paragraphe propriété des extensions de Galois.

  • Soit F un sous-corps de L, alors L est une extension galoisienne de F et le groupe de Galois associé est l'ensemble des éléments de G qui laisse F invariant.

Cette proposition est démontrée dans le paragraphe propriété des extensions de Galois.

  • Si L est une extension finie de K1 et K1 une extension de K. Alors un morphisme de K1 dans Ω laissant invariant K se prolonge en un morphisme de L dans Ω laissant invariant K.

Ici Ω désigne la clôture algébrique de K. Si L est une extension de Galois, alors le prolongement est nécessairement à valeur dans L, par définition d'une extension normale car toute extension de Galois est normale.

Cette proposition est démontrée dans le paragraphe Morphisme dans la clôture algébrique d'une extension séparable.

  • Soit F une extension de K et L une extension de F. Si L est une extension de K séparable, alors L est aussi séparable sur F et F est séparable sur K.

Cette proposition est démontrée dans le paragraphe Séparation: cas des extensions et des corps.

Démonstration de la première proposition

  • LH est un sous-corps de L, L est une extension galoisienne de LH et H est le groupe de Galois de l'extension L de LH.

Cette proposition est une conséquence directe du Lemme d'Artin.

Démonstration de la deuxième proposition

  • L'application de l'ensemble des sous-groupes du groupe G dans les sous-corps de L qui à chaque sous-groupe H associe LH est une bijection.

Considérons l'application φ qui à un sous-corps F de L associe GF le sous-ensemble de G qui laisse F invariant. La troisième proposition du paragraphe des propositions déjà démontrées prouve que l'application est bien définie.

Montrons que cette application est injective. Soit F1 et F2 deux corps distincts. Soit l un élément de F2 qui n'est pas élément de F1. À une permutation des indices près, il est toujours possible de trouver un tel élément si les deux sous-corps sont distincts. Soit H l'image de F1 par φ. Alors L est une extension de Galois de F1 d'après la troisième proposition du paragraphe des propositions déjà démontrées. Donc il existe un élément de H qui ne laisse pas l invariant d'après la deuxième proposition dans le paragraphe des propositions déjà démontrées. En conséquence F2 n'a pas H pour image par φ, et l'application est injective.

La première proposition du théorème montre que φ est surjective.

φ est une bijection, sa réciproque est donc aussi une bijection, ce qui prouve la deuxième proposition du théorème.

Démonstration de la troisième proposition

  • L'extension LH de K est galoisienne si et seulement si H est un sous-groupe distingué de G. Alors le groupe de Galois de LH est isomorphe au groupe quotient G/H.
Démontrons tout d'abord que:
(1) Si F est un sous-corps de L tel que F est une extension de Galois de K, alors le groupe de Galois de H de L sur F est distingué. De plus l'application ψ de G dans H qui à g associe sa restriction à F est un morphisme surjectif et son noyau est égal à H.

Montrons que ψ est bien définie et est un morphisme surjectif.

F est une extension normale de K car F est une extension de Galois, un morphisme de F a donc bien toujours pour image F et l'application ψ est bien définie. ψ est clairement un morphisme, soit h un élément de H, la quatrième proposition du paragraphe des propositions déjà démontrées montre qu'il est possible d'étendre h à L. L'image de cette extension par ψ est bien égal à h, ce qui montre que ψ est surjectif.

Montrons que le noyau de ψ est égal à H et que H est distingué.

Soit g un élément de G. Dire que g est dans le noyau de ψ c'est dire que la restriction de g à F est égale à l'identité, ce qui est la définition d'un membre de H, c’est-à-dire un automorphisme de L qui laisse invariant F. H est le noyau d'un morphisme, il est donc distingué.

Démontrons alors que:
(2) Si H est un sous-groupe distingué de G, alors LH est une extension de Galois de K. Si l'on note F le sous-corps LH, alors l'application ψ déjà définie est surjective et de noyau H.

Montrons que l'image de F par un élément g de G est égale à F. Soit f un élément de F et h un élément de H. L'objectif est de démontrer que g(f) est un élément de F, c’est-à-dire qu'il est invariant par h. Il faut donc démontrer que h(g(f)) = g(f). Cette égalité s'écrit encore g-1.h.g est élément de H. Cette égalité est vraie si et seulement si le sous-groupe distingué H ce qui est le cas. L'application ψ est donc un morphisme de G dans un groupe G1 d'automorphismes de F.

Montrons alors de G1 est égal à au groupe des morphismes de F laissant invariant K. Pour montrer l'égalité, le lemme d'Artin montre qu'il suffit de montrer que l'ensemble des éléments de F laissés invariants par G1 est égal à K. Soit f un élément de F tel que quel que soit g élément de G, ψ(g)(f) = f. Alors par construction g(f) = f, cette égalité étant vraie pour tout élément de g, la deuxième proposition du paragraphe des propositions déjà démontrée prouve que f est un élément de K. Nous avons donc démontré l'égalité entre G1 et le groupe des morphismes de F laissant K invariant.

F est donc une extension normale, car tout morphisme de F laissant K invariant a pour image F. La cinquième proposition du paragraphe des propositions déjà démontrées prouve la séparabilité de F. F est donc une extension de Galois. L'application ψ a pour image G1 par définition. Il a été démontré que G1 est égal à au groupe des morphismes de F laissant K invariant, ψ est donc surjective. Son noyau est par définition H.

Conclusion

Les propositions (1) et (2) sont équivalentes à la troisième proposition du théorème. Et le résultat est démontré.

Voir aussi

Liens externes

Références

R. et A. Douady, Algèbre et théories galoisiennes, Cedic/Fernand Nathan, 1978
S. Lang, Algebre, Dunod, 2004
P. Samuel, Théorie algébrique des nombres, Hermann, Paris, 1971
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Th%C3%A9or%C3%A8me fondamental de la th%C3%A9orie de Galois ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème fondamental de la théorie de galois de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Theoreme fondamental de la theorie de Galois — Théorème fondamental de la théorie de Galois En mathématiques et plus précisément en algèbre, le théorème fondamental de la théorie de Galois établit une correspondance entre la structure de corps et le groupe de Galois. Ce théorème permet l… …   Wikipédia en Français

  • Théorème fondamental de la théorie de Galois — En mathématiques et plus précisément en algèbre commutative, le théorème fondamental de la théorie de Galois établit une correspondance entre les extensions intermédiaires d une extension finie de corps et leurs groupes de Galois, dès lors que l… …   Wikipédia en Français

  • Theorie de Galois — Théorie de Galois Évariste Galois 1811 1832 En mathématiques et plus précisément en algèbre, la théorie de Galois est l étude des extensions de corps commutatifs, par le biais d une correspondance avec des groupes de transformations sur ces… …   Wikipédia en Français

  • Théorie de galois — Évariste Galois 1811 1832 En mathématiques et plus précisément en algèbre, la théorie de Galois est l étude des extensions de corps commutatifs, par le biais d une correspondance avec des groupes de transformations sur ces extensions, les groupes …   Wikipédia en Français

  • Theorie de Galois inverse — Théorie de Galois inverse En mathématiques et plus précisément en algèbre la Théorie de Galois inverse est une branche de la Théorie de Galois. L objet de la théorie est de répondre à la question : Soit G un groupe et K un corps, existe t il …   Wikipédia en Français

  • Théorie de galois inverse — En mathématiques et plus précisément en algèbre la Théorie de Galois inverse est une branche de la Théorie de Galois. L objet de la théorie est de répondre à la question : Soit G un groupe et K un corps, existe t il une extension de corps de …   Wikipédia en Français

  • Theoreme fondamental — Théorème fondamental En mathématiques, un théorème fondamental est un théorème essentiel à une branche et qui permet d établir de nouveaux théorèmes sans s appuyer sur des axiomes. Plusieurs de ces théorèmes doivent leur nom à la tradition et non …   Wikipédia en Français

  • Théorie de Galois — En mathématiques et plus précisément en algèbre, la théorie de Galois est l étude des extensions de corps commutatifs, par le biais d une correspondance avec des groupes de transformations sur ces extensions, les groupes de Galois. Cette méthode… …   Wikipédia en Français

  • Théorie de Galois inverse — En mathématiques et plus précisément en algèbre la théorie de Galois inverse est une branche de la théorie de Galois. L objet de la théorie est de répondre à la question : Soit G un groupe et K un corps, existe t il une extension de corps de …   Wikipédia en Français

  • Théorème fondamental — En mathématiques, un théorème fondamental est un théorème essentiel à une branche et qui permet d établir de nouveaux théorèmes sans s appuyer sur des axiomes. Plusieurs de ces théorèmes doivent leur nom à la tradition et non à la branche qui l… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”