Intégrale d'Itō

Intégrale d'Itō

L'intégrale d'Itō, appelée ainsi en l'honneur du mathématicien Kiyoshi Itō est un des outils fondamentaux du calcul stochastique.

Il s'agit d'une intégrale définie de façon similaire à l'intégrale de Riemann comme limite d'une somme de Riemann. Si on se donne un processus de Wiener (ou mouvement brownien) B : [0, T] \times \Omega \to \mathbb{R}\, ainsi que X : [0, T] \times \Omega \to \mathbb{R} un processus stochastique adapté à la filtration naturelle associée à Bt, alors l'intégrale d'Itô

\int_{0}^{T} X_{t} \, \mathrm{d} B_{t} : \Omega \to \mathbb{R}

est définie par la limite en moyenne quadratique de

\sum_{i = 0}^{k - 1} X_{t_{i}} \left( B_{t_{i+1}} - B_{t_{i}} \right)

lorsque le pas de la partition 0 = t_{0} < t_{1} < \dots < t_{k} = T de [0,T] tend vers 0.

Ces sommes, considérées comme des sommes de Riemann-Stieltjes pour chaque chemin du mouvement brownien donné, ne convergent pas en général; la raison en est que le mouvement brownien n'est pas à variations bornées. L'usage de la convergence quadratique est le point essentiel de cette définition.

Propriétés

Avec les notations précédentes, le processus stochastique Y défini, pour t réel positif, par Y_{t}=\int_{0}^{t}{X_{s} \mathrm{d}B_{s}}, est une martingale. En particulier, son espérance est constante.

D'autre part, on a la propriété dite d'isométrie: E(Y_{t}^{2})=\int_{0}^{t}{E(X_{s}^{2}) \mathrm{d}s}. Noter que cette dernière intégrale est "classique", i.e. est une intégrale au sens de Riemann par rapport à la variable s.

Voir aussi

  • Portail des probabilités et des statistiques Portail des probabilités et des statistiques

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Intégrale d'Itō de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Integrale d'Ito — Intégrale d Itō L intégrale d Itō, appelée ainsi en l honneur du mathématicien Kiyoshi Itō est un des outils fondamentaux du calcul stochastique. Il s agit d une intégrale définie de façon similaire à l intégrale de Riemann comme limite d une… …   Wikipédia en Français

  • Intégrale d'Itô — Intégrale d Itō L intégrale d Itō, appelée ainsi en l honneur du mathématicien Kiyoshi Itō est un des outils fondamentaux du calcul stochastique. Il s agit d une intégrale définie de façon similaire à l intégrale de Riemann comme limite d une… …   Wikipédia en Français

  • Itō (homonymie) — Ito Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Ito peut faire référence à : un des quartiers de la commune de Mayoyo dans la ville de Bandundu en République démocratique du Congo, Ito (糸), un… …   Wikipédia en Français

  • Integrale de Stieltjes — Intégrale de Stieltjes Thomas Stieltjes (1856–1894) L intégrale de Stieltjes constitue une généralisation de l intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f …   Wikipédia en Français

  • Intégrale De Stieltjes — Thomas Stieltjes (1856–1894) L intégrale de Stieltjes constitue une généralisation de l intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f …   Wikipédia en Français

  • Intégrale de Riemann-Stieltjes — Intégrale de Stieltjes Thomas Stieltjes (1856–1894) L intégrale de Stieltjes constitue une généralisation de l intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f …   Wikipédia en Français

  • Intégrale de stieltjes — Thomas Stieltjes (1856–1894) L intégrale de Stieltjes constitue une généralisation de l intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f …   Wikipédia en Français

  • Intégrale de Riemann — Interprétation géométrique de l intégrale de la fonction f. En analyse réelle, l intégrale de Riemann[1] est une façon simple de définir l intégrale d une fonction sur un …   Wikipédia en Français

  • Intégrale de Lebesgue — En mathématiques, l’intégrale de Lebesgue désigne à la fois une théorie relative à l intégration et à la mesure, puis le résultat de l intégration d une fonction à valeurs réelles définie sur (ou sur ), munis de la mesure de Lebesgue.… …   Wikipédia en Français

  • Ito — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Ito peut faire référence à : un des quartiers de la commune de Mayoyo dans la ville de Bandundu en République démocratique du Congo, Ito (糸), un nom… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”