Algèbre abstraite

Algèbre abstraite

Algèbre générale

L' algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l'étude des structures algébriques et de leurs relations. L'appellation algèbre générale s'oppose à celle d' algèbre élémentaire; cette dernière enseigne le calcul algébrique, c'est-à-dire les règles de manipulation des formules et des expressions algébriques.

Historiquement, les structures algébriques sont apparues dans différents domaines des mathématiques, et n'y ont pas été étudiées séparément. C'est pourquoi l'algèbre générale possède beaucoup de connexions avec toutes les branches des mathématiques.

L'étude des structures algébriques peut être faite de manière abstraite, mais unifiée dans le cadre de l'algèbre universelle.

Sommaire

Bases

Structures algébriques

Théorie des ensembles flous

Voir aussi

Des mathématiciens ayant fourni un travail majeur pour la construction de l'algèbre :

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Alg%C3%A8bre g%C3%A9n%C3%A9rale ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Algèbre abstraite de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Algebre generale — Algèbre générale L algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l étude des structures algébriques et de leurs relations. L appellation algèbre générale s oppose à celle d algèbre… …   Wikipédia en Français

  • Algèbre Générale — L algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l étude des structures algébriques et de leurs relations. L appellation algèbre générale s oppose à celle d algèbre élémentaire; cette… …   Wikipédia en Français

  • Algèbre générale — Pour les articles homonymes, voir Algèbre (homonymie). L algèbre générale, ou algèbre abstraite, est la branche des mathématiques qui porte principalement sur l étude des structures algébriques et de leurs relations. L appellation algèbre… …   Wikipédia en Français

  • ALGÈBRE — L’algèbre au sens moderne, à savoir l’étude des structures algébriques indépendamment de leurs réalisations concrètes, ne s’est dégagée que très progressivement au cours du XIXe siècle, en liaison avec le mouvement général d’axiomatisation de… …   Encyclopédie Universelle

  • Algebre multilineaire — Algèbre multilinéaire En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept d’un vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire… …   Wikipédia en Français

  • Algèbre Multilinéaire — En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept d’un vecteur et développe la théorie des espaces vectoriels, l’algèbre multilinéaire est bâtie sur le… …   Wikipédia en Français

  • Algebre universelle — Algèbre universelle L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de… …   Wikipédia en Français

  • Algèbre Universelle — L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces vectoriels, etc. Elle permet de définir de manière… …   Wikipédia en Français

  • Algèbre multilinéaire — Pour les articles homonymes, voir Algèbre (homonymie). En mathématiques, l’algèbre multilinéaire étend les méthodes de l’algèbre linéaire. Tout comme l’algèbre linéaire est bâtie sur le concept de vecteur et développe la théorie des espaces… …   Wikipédia en Français

  • Algèbre universelle — Pour les articles homonymes, voir Algèbre (homonymie). L algèbre universelle est la branche de l algèbre qui a pour but de traiter de manière générale et simultanée les différentes structures algébriques : groupes, monoïdes, anneaux, espaces …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”