Loi De Composition Interne

Loi De Composition Interne

Loi de composition interne

Lalgèbre est la branche des mathématiques qui sintéresse aux ensembles et aux relations qui peuvent y être établies. Elle recherche les conséquences générales qui découlent des propriétés de ces relations, indépendamment de la nature précise des ensembles et des relations en cause. Parmi les relations étudiées, les lois de composition interne occupent une place privilégiée.

Sommaire

Présentation

Nous avons tous depuis le primaire une assez bonne idée de la notion d'opérations telles que l'addition, la soustraction, la multiplication ou la division. Une opération (interne) dans un ensemble est une relation interne dans cet ensemble, qui, à deux éléments quelconques de cet ensemble, appelés opérandes, en associe éventuellement un troisième, unique, nommé résultat, toujours dans ce même ensemble.

Pour que lopération considérée soit effectivement une loi de composition interne, il faut quelle ait un sens quels que soient les deux éléments de lensemble choisis (on dit formellement que l'opération doit être définie partout). Ainsi :

  • la division nest pas une loi de composition interne dans \mathbb{R} \,, parce quon ne peut pas diviser par zéro : par exemple, « 3 / 0 » na pas de sens. Mais cette même division est une loi de composition interne dans \mathbb{R}^{*} \, (ensemble des réels privés de 0). Enfin cette même opération n'est pas une loi de composition interne dans \mathbb{Z}^{*} \, car 2 / 3 n'est pas un entier relatif.
  • la soustraction peut être ou non une loi de composition interne selon lensemble de nombres considéré :
    • sil sagit de lensemble des nombres usuels, dits entiers naturels { 0, 1, 2, 3,... }, ce nen est pas une, puisque « 3 - 5 », par exemple, na pas pour résultat lun de ces nombres usuels.
    • si au contraire, on choisit lensemble des entiers relatifs, qui en plus des entiers naturels, contient les entiers négatifs { ..., -3, -2, -1}, alors la soustraction est bien une loi de composition interne.

En résumé, une loi de composition interne dans un ensemble E, ou, plus simplement une loi dans E, est une opération qui donne un résultat dans E pour tous les couples possibles d'éléments de E.

Exemple

Dans lensemble des entiers relatifs, laddition est une loi de composition interne ayant entre autres les propriétés suivantes, qui seront définies plus formellement dans la seconde partie de larticle :

  • zéro est élément neutre pour cette loi : lajouter à nimporte quel nombre redonne ce nombre : par exemple,   5 + 0 = 5  , et   0 + 8 = 8   ;
  • pour tout entier, il existe un autre nombre, son opposé (le terme général est élément symétrique), tel quajouté au premier, il redonne lélément neutre, zéro. Lopposé se note comme lentier initial changé de signe. Ainsi :   3 + (-3) = 0   ;
  • on peut échanger les deux éléments autour du signe «  +  » :   3 + 5 = 5 + 3 = 8   . On dit que lopération est commutative ;
  • on peut grouper les éléments comme on le souhaite quand on en ajoute plus de deux :   3 + 5 + 4   peut se calculer de deux manières :
    • en calculant dabord   3 + 5 = 8   puis en ajoutant   4   au résultat,
    • ou en calculant   5 + 4 = 9   avant de calculer   3 + 9   .
Ces deux méthodes mènent au même résultat, ce que lon note :   (3 + 5) + 4 = 3 + (5 + 4)   . On dit que lopération est associative.

Ces quatre propriétés, existence dun élément neutre, existence de symétriques, commutativité, associativité, peuvent se retrouver pour dautres ensembles et dautres lois. Ainsi, on peut étudier lensemble des translations (cest-à-dire les déplacements en ligne droite : par exemple, se déplacer de 3 mètres vers la gauche et de 2 mètres vers le haut), et une loi de composition interne sur cet ensemble, la composition : la composition de deux translations consistant simplement à faire le premier déplacement, puis le second. On retrouve pour la composition les mêmes propriétés que pour laddition :

  • le neutre est la translation nulle, consistant à ne pas se déplacer ;
  • le symétrique dune translation consiste à faire le même déplacement dans lautre sens (3 mètres à droite et 2 mètres vers le bas pour lexemple précédent: si on fait successivement les deux, cest comme si on faisait le déplacement nul ;
  • on peut faire les déplacements dans lordre quon veut, on retrouve la commutativité et lassociativité.

Lensemble des entiers relatifs avec laddition, et lensemble des translations avec la composition ont ces propriétés simples en commun. Un ensemble et une loi qui possèdent ces quatre propriétés particulières sappelle en algèbre un groupe abélien. Lalgèbre sattache ensuite à rechercher dautres propriétés plus complexes qui découlent de ces quatre premières. Ces nouvelles propriétés seront alors valables aussi bien pour lensemble des entiers relatifs que pour celui des translations, et pour tout autre ensemble et tout autre loi de composition interne ayant la structure dun groupe abélien, sans quil soit nécessaire de le redémontrer pour chacun.

Définition formelle

On appelle loi de composition interne sur un ensemble E toute application *\, de E × E dans E (il s'agit donc de relations ternaires internes particulières).

Un ensemble E muni dune loi de composition interne *\, constitue une structure algébrique appelée magma et notée « ( E, *\, ) ».

Quelques exemples triviaux, pour un ensemble E non vide :

  • les applications constantes : si c appartient à E : \forall x \in E, \forall y \in E,   x \,* y   = c ;
  • lapplication sélectionnant le terme de gauche : \forall x \in E, \forall y \in E,   x \,* y   = x ;
  • lapplication sélectionnant le terme de droite : \forall x \in E, \forall y \in E,   x \,* y   = y.

Éléments particuliers

Composé de deux éléments et composé réciproque

Dans un magma ( E, *\, ), on appelle « composé d'un élément x par un élément y », l'unique élément x *\, y associé par la loi *\, au couple ( x, y ).

L'élément y *\, x est le composé de y par x. Il est associé par la loi *\, au couple ( y, x ), réciproque du couple ( x, y ); c'est pourquoi il est aussi appelé composé réciproque de x par y ou de x *\, y.


Certains éléments jouent un rôle particulier en raison de leurs propriétés :

Carrés et dérivés

En sens inverse, tout élément x   a un carré unique, noté habituellement « x 2  ».
Si la loi est notée additivement, le terme de double sera employé de préférence à celui de carré.
Exemple : dans \mathbb{Z} \,, le double de 3 (pour l'addition) est 6, et son carré (pour la multiplication) est 9.
En dautres termes, cet élément est son propre carré.
Exemples :
  • tout élément neutre d'une loi est idempotent pour cette loi;
  • dans tout ensemble numérique les contenant, 0 et 1 sont les seuls éléments idempotents pour la multiplication.
  • un élément  d \, est dit dévolutif ssi :    \forall\ x \in E ,\ x * x = d \,
En dautres termes, d est le carré de tous les éléments de E. Tout élément dévolutif est idempotent. En effet, il est carré de tout élément de E donc en particulier, il est son propre carré
Exemple : dans un groupe dont tous les éléments autres que le neutre sont d'ordre deux, l'élément neutre est dévolutif.

Neutres et dérivés

  • un élément  e \, est dit neutre à gauche ssi :    \forall\ x \in E ,\ e * x = x \,
  • un élément  e \, est dit neutre à droite ssi :    \forall\ x \in E ,\ x * e = x \,
  • un élément  e \, est dit neutre lorsquil est neutre   à droite et à gauche;
Exemple : dans \mathbb{R} \,, l'élément neutre de l'addition est 0, et celui de la multiplication est 1.
Tout élément neutre, même unilatère (cest-à-dire soit à gauche, soit à droite, mais pas les deux), est idempotent.
  • un élément  s \, est dit involutif sil existe un élément neutre  e \, et si :    s * s = e \,;
Lélément neutre est nécessairement involutif.
Le seul élément involutif et idempotent est l'élément neutre.
  • un élément  a \, est symétrique à gauche de l'élément  b \,, si  \ a * b = e \,. L'élément  b \, est alors symétrique à droite de l'élément  a \,.

Absorbants et dérivés

  • un élément  a \, est dit absorbant à gauche ssi :    \forall\ x \in E ,\ a * x = a \,
  • un élément  a \, est dit absorbant à droite ssi :    \forall\ x \in E ,\ x * a = a \,
  • un élément  a \, est dit absorbant lorsquil est absorbant   à droite et à gauche;
Exemple : dans \mathbb{R} \,, 0 est absorbant pour la multiplication, alors que l'addition ne présente pas d'élément absorbant.
Tout élément absorbant, même unilatère, est idempotent.
  • un élément  s \, est dit nilpotent sil existe un élément absorbant  a \, et si :    s * s = a \,;
Lélément absorbant est nécessairement nilpotent...

Centre d'une structure

En d'autres termes, un élément est central si son composé par tout élément se confond avec le réciproque de ce composé.
Les éléments neutre et absorbant bilatères sont commutatifs.
On appelle centre de E, et on note Z ( E ), lensemble des éléments commutatifs de E.

Réguliers et dérivés

  • un élément  s \, est dit régulier à gauche ou simplifiable à gauche ssi :
 \forall\ ( x , y ) \in E^2 ,\ ( s * x = s * y ) \Rightarrow ( x = y ) \,
  • un élément  s \, est dit régulier à droite ou simplifiable à droite ssi :
 \forall\ ( x , y ) \in E^2 ,\ ( x * s = y * s ) \Rightarrow ( x = y ) \,
  • un élément  s \, est dit régulier ou simplifiable lorsquil est régulier à droite et à gauche;
  • un élément  s \, est dit antirégulier ou cosimplifiable ssi :
 \forall\ ( x , y ) \in E^2 ,\ ( s * x = y * s ) \Rightarrow ( x = y ) \,
  • un élément  s \, est dit irrégulier à gauche ou non-simplifiable à gauche ssi :
 \exists\ ( x , y ) \in E^2 /\ ( x \not = y ) \wedge ( s * x = s * y ) \,
  • un élément  s \, est dit irrégulier à droite ou non-simplifiable à droite ssi :
 \exists\ ( x , y ) \in E^2 /\ ( x \not = y ) \wedge ( x * s = y * s ) \,
  • un élément  s \, est dit irrégulier ou non-simplifiable lorsquil est irrégulier à droite ou à gauche;
  • un élément  s \, est dit diviseur de zéro à gauche ssi il existe un élément absorbant  a \,, différent de  s \,, et si :  \exists\ r \in E /\ ( r \not = a ) \wedge ( s * r = a ) \,;
Un diviseur de zéro à gauche est irrégulier à gauche;
  • un élément  s \, est dit diviseur de zéro à droite ssi il existe un élément absorbant  a \,, différent de  s \,, et si :  \exists\ r \in E /\ ( r \not = a ) \wedge ( r * s = a ) \,;
Un diviseur de zéro à droite est irrégulier à droite;

Paires d'éléments

Des paires déléments peuvent aussi présenter des propriétés particulières :

  • deux éléments  r \, et  s \, seront dits permutables ou commutants ssi :    r * s = s * r \,
ou, en d'autres termes, si leur composé se confond avec son réciproque.
- sil existe un élément neutre  e \,,
- et si :    r * s = e \,;
- sil existe un élément absorbant  a \,,
- si aucun des deux éléments nest égal à  a \,,
- et si :    r * s = a \,;
Les diviseurs de zéro sont irréguliers. Les éléments nilpotents autres que lélément absorbant sont des diviseurs de zéro.

Exemple: pour les entiers relatifs, 0 est neutre pour laddition, absorbant pour la multiplication, et neutre à droite pour la soustraction.

Propriétés

Certaines propriétés des lois de composition interne, particulièrement intéressantes, ont reçu un nom. Soit un magma ( E, *\, ); la loi *\, peut y présenter les propriétés suivantes :

Existence déléments remarquables

  • *\, est dite unifère à gauche sil existe un élément neutre à gauche  e \,, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ e * x = x \,
Une loi peut présenter plusieurs éléments neutres à gauche, à condition quelle ne présente pas délément neutre à droite;
  • *\, est dite unifère à droite sil existe un élément neutre à droite  e \,, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ x * e = x \,
Une loi peut présenter plusieurs éléments neutres à droite, à condition quelle ne présente pas délément neutre à gauche;
  • *\, est dite unifère (parfois unitaire) sil existe un élément neutre  e \,, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ x * e = e * x = x \,
Une loi est unifère si et seulement si elle est unifère à gauche et unifère à droite;
Lélément neutre dune loi unifère est unique;
  • *\, est dite absorbante à gauche sil existe un élément absorbant à gauche  a \,, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ a * x = a \,
Une loi peut présenter plusieurs éléments absorbants à gauche, à condition quelle ne présente pas délément absorbant à droite;
  • *\, est dite absorbante à droite sil existe un élément absorbant à droite  a \,, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ x * a = a \,
Une loi peut présenter plusieurs éléments absorbants à droite, à condition quelle ne présente pas délément absorbant à gauche;
  • *\, est dite absorbante sil existe un élément absorbant  a \,, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ x * a = a * x = a \,
Une loi est absorbante si et seulement si elle est absorbante à gauche et absorbante à droite;
Lélément absorbant dune loi absorbante est unique;
  • *\, est dite dévolutive sil existe un élément dévolutif  d \,, cest-à-dire si :
 \exists\ d \in E ,\ \forall\ x \in E ,\ x * x = d \,
Lélément dévolutif dune loi dévolutive est unique;
  • *\, est dite involutive à gauche si elle est unifère à gauche et si tous les éléments de E sont involutifs, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ ( e\ *\ x = x )\ \wedge\ ( x\ *\ x = e ) \,
Une loi est involutive à gauche si et seulement si elle est unifère à gauche et dévolutive, et lélément neutre à gauche est lélément dévolutif.
  • *\, est dite involutive à droite si elle est unifère à droite et si tous les éléments de E sont involutifs, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ ( x\ *\ e = x )\ \wedge\ ( x\ *\ x = e ) \,
Une loi est involutive à droite si et seulement si elle est unifère à droite et dévolutive, et lélément neutre à droite est lélément dévolutif.
  • *\, est dite involutive si elle est unifère et si tous les éléments de E sont involutifs, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ ( x\ *\ e = e\ *\ x = x )\ \wedge\ ( x\ *\ x = e ) \,
Une loi est involutive si et seulement si elle est unifère et dévolutive, et lélément neutre est lélément dévolutif.
  • *\, est dite nilpotente à gauche si elle est absorbante à gauche et si tous les éléments de E sont nilpotents, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ ( a\ *\ x = a )\ \wedge\ ( x\ *\ x = a ) \,
Une loi est nilpotente à gauche si et seulement si elle est absorbante à gauche et dévolutive, et lélément absorbant à gauche est lélément dévolutif.
  • *\, est dite nilpotente à droite si elle est absorbante à droite et si tous les éléments de E sont nilpotents, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ ( x\ *\ a = a )\ \wedge\ ( x\ *\ x = a ) \,
Une loi est nilpotente à droite si et seulement si elle est absorbante à droite et dévolutive, et lélément absorbant à droite est lélément dévolutif.
  • *\, est dite nilpotente si elle est absorbante et si tous les éléments de E sont nilpotents, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ ( x\ *\ a = a\ *\ x = a )\ \wedge\ ( x\ *\ x = a ) \,
Une loi est nilpotente si et seulement si elle est absorbante et dévolutive, et lélément absorbant est lélément dévolutif.

Régularité et propriétés liées

  • *\, est dite régulière à gauche ou simplifiable à gauche si tous les éléments de E sont réguliers à gauche, c'est-à-dire si :
 \forall\ ( x , y , z ) \in E^3 ,\ ( x * y = x * z ) \Rightarrow ( y = z ) \,
  • *\, est dite régulière à droite ou simplifiable à droite si tous les éléments de E sont réguliers à droite, c'est-à-dire si :
 \forall\ ( x , y , z ) \in E^3 ,\ ( y * x = z * x ) \Rightarrow ( y = z ) \,
  • *\, est dite régulière ou simplifiable si tous les éléments de E sont réguliers, cest-à-dire si :
 \forall\ ( x , y , z ) \in E^3 ,\ [\ ( x * y = x * z ) \or ( y * x = z * x )\ ] \Rightarrow ( y = z ) \,
Une loi est régulière si et seulement si elle est régulière à gauche et régulière à droite.
  • *\, est dite antirégulière ou cosimplifiable si tous les éléments de E sont antiréguliers, cest-à-dire si :
 \forall\ ( x , y , z ) \in E^3 ,\ ( x * y = z * x ) \Rightarrow ( y = z ) \,
  • *\, est dite symogène sil existe pour chaque couple ( a, b ) de E 2 une solution ( x, y ) unique aux équations   a *\, x = b   et   y *\, a = b  , cest-à-dire si :
 \forall\ ( a , b ) \in E^2 , [\ \exists\ x \in E /\ ( a * x = b ) \wedge [\ \forall\ z \in E ,\ ( a * z = b ) \Rightarrow ( z = x ) ] ] \,
 \wedge [\ \exists\ y \in E /\ ( y * a = b ) \wedge [\ \forall\ z \in E ,\ ( z * a = b ) \Rightarrow ( z = y )\ ] ] \,
Cette propriété est plus forte que la régularité : une loi symogène est nécessairement régulière. Toutefois, dans le cas d'un magma fini, symogénéité et régularité sont équivalentes.

Associativité et propriétés analogues

 \forall\ ( x , y , z ) \in E^3 ,\ x * ( y * z ) = ( x * y ) * z \,
On peut noter que lassociativité dune loi permet de se passer des parenthèses quand on répète la loi; la plupart des lois intéressantes sont associatives (exemples : laddition, la multiplication, la composition des correspondances,...).
 \forall\ ( x , y ) \in E^2 ,\ [\ x * ( x * y ) = ( x * x ) * y \ ] \wedge [\ ( x * y ) * y = x * ( y * y )\ ] \,
Cette propriété est moins forte que l'associativité, puisquune loi associative est nécessairement alternative.
 \forall\ x \in E ,\ x * ( x * x ) = ( x * x ) * x \,
Cette propriété est moins forte que lalternativité, puisquune loi alternative est nécessairement associative des puissances.
Quand cette propriété est vérifiée, il est possible dintroduire la notion de puissance dun élément (d le nom de la propriété:
- la puissance n-ième dun élément x, notée habituellement « x n  », est égale au résultat de la composition de x selon *\,, (n - 1) fois avec lui-même; ainsi   x 1 = x ;   x 2 = x *\, x ;   x 3 = x *\, x *\, x ;...
- si, de plus, la loi *\, présente un élément neutre e, on pose alors   x 0 = e
- si, de plus, la loi *\, est inversible (voir plus bas), on pose alors   x -n = (x n ) -1
  • *\, est dite permutative ssi :
 \forall\ ( x , y , z , t ) \in E^4 ,\ ( x * y ) * ( z * t ) = ( x * z ) * ( y * t ) \,
Cette propriété est appelée permutativité car elle permet de permuter les termes moyens dans les expressions du type ci-dessus.
Cette propriété est moins forte que lassociativité, car une loi associative et commutative est nécessairement permutative; notons toutefois quune loi associative, mais non-commutative, nest pas nécessairement permutative, et quune loi permutative, même commutative, nest pas nécessairement associative.
(Exemples de lois permutatives non associatives : la soustraction dans \mathbb{Z} \, et la division dans \mathbb{Q}^{*} \,, ou la loi qui associe à deux points dun espace affine leur milieu,...).
 \forall\ ( x , y , z ) \in E^3 , ( x * ( y * z )) * x = ( x * y ) * ( z * x ) \,
Cette propriété est moins forte que lassociativité, puisqu'une loi associative est nécessairement neutroactive.

Autres propriétés

  • *\, est dite idempotente si tous les éléments de E sont idempotents, cest-à-dire si :
 \forall\ x \in E ,\ x * x = x \,
  • *\, est dite intègre si elle est absorbante et si aucun élément de E nest diviseur de zéro, cest-à-dire si :
 \exists\ a \in E ,\ \forall\ x \in E ,\ ( x\ *\ a = a\ *\ x = a )\ \wedge\ [\ \forall\ y \in E ,\ ( x\ *\ y = a ) \Rightarrow [\ ( x = a )\ \vee\ ( y = a ) \ ]\ ] \,
  • *\, est dite anticommutative si elle est unifère et si lélément neutre est le seul élément commutatif, cest-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ ( x\ *\ e = e\ *\ x = x )\ \wedge\ [\ \forall\ y \in E ,\ ( x\ *\ y = y\ *\ x ) \Rightarrow [\ ( x = e )\ \vee\ ( y = e ) \ ]\ ] \,
Remarque : il existe une autre définition de l'anticommutativité, sans lien avec la précédente (voir à ce sujet la page de discussion liée à cet article):
*\, est dite anticommutative si elle est unifère et si pour toute paire d'éléments de E, leur composé et son réciproque sont symétriques, c'est-à-dire si :
 \exists\ e \in E ,\ \forall\ x \in E ,\ ( x * e = e * x = x )\ \wedge\ [\ \forall\ y \in E ,\ ( x * y ) * ( y * x ) = e \ ] \,
  • *\, est dite commutative si tous les éléments de E sont commutatifs, cest-à-dire si :
 \forall\ ( x , y ) \in E^2 ,\ x * y = y * x \,;
Les lois commutatives sont notées par « + », « \top  » ou « \bot  » plutôt que par « *\, ».
Les notions de permutativité et de commutativité sont des notions différentes: il existe des lois permutatives et non commutatives (comme la soustraction dans \mathbb{Z} \,) et des lois commutatives qui ne sont pas permutatives (comme la somme des inverses dans \mathbb{R}_{+}^{*} \,).

La liste de propriétés ci-dessus nest pas exhaustive, loin de . Toutefois, nous n'aborderons dans ce paragraphe quun seul autre cas : dans des structures algébriques comportant plusieurs lois, certaines de ces lois ont des propriétés relatives à dautres lois. La plus importante de ces lois relatives est la distributivité.

  • Une loi *\, peut être distributive par rapport à une autre loi \bot (par exemple, la multiplication lest par rapport à laddition:
 \forall\ ( x , y , z , t ) \in E^4 ,\ ( x \bot y ) * ( z \bot t ) = [ ( x * z ) \bot ( x * t ) ]\ \bot\ [ ( y * z ) \bot (y * t ) ] \,

Cette propriété se décompose en deux parties :

- distributivité à gauche :
 \forall\ ( x , y , z ) \in E^3 ,\ x * ( y \bot z ) = ( x * y ) \bot ( x * z ) \,
- distributivité à droite :
 \forall\ ( x , y , z ) \in E^3 ,\ ( x \bot y ) * z = ( x * z ) \bot ( y * z ) \,

Remarque : si dans la situation ci-dessus la loi \bot est régulière et unifère, alors son élément neutre est nécessairement absorbant pour la loi *\,. Cela explique entre autres pourquoi, dans un corps, l'élément neutre de la première loi n'a pas de symétrique par la deuxième loi.

Inversibilité

Cette propriété importante mérite un paragraphe séparé. Nous nous placerons dans un magma ( E, *\, ) dont nous supposerons la loi unifère, c'est-à-dire disposant d'un élément neutre  e \,. Il est alors possible de définir les notions suivantes:

  • un élément  s \, est dit symétrisable à gauche ou inversible à gauche si :
 \exists\ s' \in E /\ s' * s = e \,
s' est alors appelé élément symétrique à gauche de s;
  • un élément  s \, est dit symétrisable à droite ou inversible à droite si :
 \exists\ s' \in E /\ s * s' = e \,
s' est alors appelé élément symétrique à droite de s;
  • un élément  s \, est dit symétrisable ou inversible lorsqu'il est inversible à droite et à gauche et que les deux symétriques sont égaux;
s' est alors appelé élément symétrique de s.
Note : attention à ne pas confondre le symétrique d'un composé avec son réciproque !


  • la loi  * \, est dite symétrisable à gauche ou inversible à gauche si tous les éléments de E sont inversibles à gauche;
  • la loi  * \, est dite symétrisable à droite ou inversible à droite si tous les éléments de E sont inversibles à droite;
  • la loi  * \, est dite symétrisable ou inversible si tous les éléments de E sont inversibles.


Si la loi  * \, est de plus associative, il y a unicité, pour les éléments symétrisables à gauche (respectivement à droite), de leur symétrique à gauche (resp. à droite). Et si un élément s est symétrisable à droite et à gauche alors ses symétriques à gauche et à droite sont forcément égaux entre eux et cet élément est donc symétrisable. Son symétrique est alors noté habituellement « s -1  ».

Exemples :

  • 2 n'est pas symétrisable pour l'addition dans les entiers naturels;
  • 2 est symétrisable, de symétrique -2, pour laddition dans les entiers relatifs;
  • 2 nest pas inversible pour le produit dans les entiers relatifs;
  • 2 est inversible, dinverse \frac{1}{2}, pour le produit dans les rationnels.

Remarque :

Lorsque la loi est notée additivement, le symétrique est plutôt appelé opposé, et quand la loi est notée multiplicativement le symétrique est plutôt appelé inverse.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Loi de composition interne ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Loi De Composition Interne de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Loi de composition interne — Une loi de composition interne (ou, parfois, opération[1]) est un procédé qui, à deux éléments d un ensemble E, associe un troisième élément de E. L addition et la multiplication sont des exemples classiques de lois de composition interne des… …   Wikipédia en Français

  • Loi De Composition — En mathématiques, une loi de composition, ou loi tout court, est une relation ternaire qui est aussi une application. C’est donc une application d’un produit cartésien de deux ensembles E et F dans un troisième ensemble G, avec G égal à E ou à F …   Wikipédia en Français

  • Loi de composition — En mathématiques, étant donné un ensemble E une loi de composition, sur E, ou loi tout court, est une application, soit de E × E dans E, on dit alors que la loi est interne, soit de K× E dans E (ou E× K dans E), où K est un autre ensemble et la… …   Wikipédia en Français

  • Loi De Composition Externe — En mathématiques, une loi de composition externe dans un ensemble E à opérateurs (ou scalaires) dans S ( on dit aussi plus brièvement une loi externe de S sur E ) est une relation ternaire externe de S sur E qui est aussi une application.… …   Wikipédia en Français

  • Loi de composition externe — En mathématiques, une loi de composition externe dans un ensemble E à opérateurs (ou scalaires) dans S ( on dit aussi plus brièvement une loi externe de S sur E ) est une relation ternaire externe de S sur E qui est aussi une application.… …   Wikipédia en Français

  • composition — [ kɔ̃pozisjɔ̃ ] n. f. • XIIe au sens I; de composer I ♦ Action de composer. 1 ♦ (1365) Action, manière de former un tout en assemblant plusieurs parties, plusieurs éléments. ⇒ agencement, arrangement, assemblage, combinaison, constitution,… …   Encyclopédie Universelle

  • interne — [ ɛ̃tɛrn ] adj. et n. • 1560; « ce qui est à l intérieur » XIVe; lat. internus I ♦ Adj. 1 ♦ Qui est situé en dedans, est tourné vers l intérieur. ⇒ intérieur. Parois, parties internes. ♢ Math. Angles internes, opposés aux angles externes dans la… …   Encyclopédie Universelle

  • interné — interne [ ɛ̃tɛrn ] adj. et n. • 1560; « ce qui est à l intérieur » XIVe; lat. internus I ♦ Adj. 1 ♦ Qui est situé en dedans, est tourné vers l intérieur. ⇒ intérieur. Parois, parties internes. ♢ Math. Angles internes, opposés aux angles externes… …   Encyclopédie Universelle

  • Loi commutative — En mathématiques, une loi de composition interne sur un ensemble S est dite commutative lorsque, pour tous x et y dans S, . Les exemples les plus simples de lois commutatives sont sans doute l addition et la multiplication des entiers naturels. D …   Wikipédia en Français

  • Loi scientifique — Liste des lois scientifiques Liste des lois scientifiques par ordre alphabétique. Pour l établissement de l ordre alphabétique, il a été convenu ce qui suit : Si le nom de la loi comprend des noms de scientifiques, on se base sur le premier… …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/1068564 Do a right-click on the link above
and select “Copy Link”