Computer algebra system

Computer algebra system

Système de calcul formel

Un système de calcul formel (computer algebra system ou CAS en anglais) est un logiciel qui facilite le calcul symbolique. La partie principale de ce système est la manipulation des expressions mathématiques sous leur forme symbolique.

Sommaire

Types d'expressions

Les expressions peuvent être :

  • des polynômes avec de multiples variables ;
  • des fonctions standards (sinus, exponentielle, etc.) ;
  • des fonctions spéciales (Gamma, Zeta, erf, Bessel, etc.) ;
  • des fonctions composées de diverses expressions ;
  • des dérivées, des intégrales, des sommes et des produits d'expressions ;
  • des séries tronquées avec des expressions comme coefficients ;
  • des matrices d'expressions ;
  • etc.

Manipulations symboliques

Les manipulations symboliques sont typiquement :

  • simplification, qu'elle soit automatique ou effectuée à partir d'hypothèses ;
  • substitution de symboles ou de valeurs numériques par des expressions ;
  • changement de forme des expressions : expansion, de produits et de puissances, re-écriture de fractions partielles, re-écriture de fonctions trigonométriques comme exponentielles, etc. ;
  • différentiation relative à une ou plusieurs variables ;
  • optimisation globale, qu'elle soit conditionnelle ou non ;
  • factorisation partielle ou complète ;
  • solution d'équations linéaires et de quelques équations non-linéaires dans différents domaines ;
  • solution de quelques équations différentielles et d'équation aux différences ;
  • calcul de limites de certaines fonctions ;
  • quelques intégrales définies et indéfinies, incluant des intégrales à plusieurs variables ;
  • transformées (Laplace, Fourier, etc.) ;
  • expansion en série de Taylor, de Laurent et de Puiseux ;
  • quelques expansions de séries infinies ;
  • quelques sommes de série ;
  • opérations sur les matrices incluant le produit et l'inversion, etc. ;
  • affichage d'expressions mathématiques, souvent à l'aide de système semblables à TeX.

Autres fonctionnalités

De plus, ces systèmes incluent des opérations numériques :

  • évaluation en fonction de valeurs numériques précises
  • evaluation en multi-précision. Par exemple, donner la valeur numérique de 21/3 avec 10 000 chiffres
  • calculs numériques d'expressions d'algèbre linéaire
  • tracé de graphes en 2D et 3D

Plusieurs offrent également un langage de programmation haut niveau, ce qui permet aux utilisateurs de personnaliser ou d'augmenter les fonctionnalités déjà présentes.

Le temps d'exécution lors d'évaluation numérique est habituellement plus long que les programmes équivalents implantés en MATLAB, Octave ou en langage C. C'est normal, puisque ces systèmes considèrent la représentation symbolique presque tout le temps, ce qui ne leur permet pas de profiter au mieux des bibliothèques numériques des CPU.

Historique

Martin Veltman est le pionnier dans ce domaine, lui qui a conçu les premières applications en physique des hautes énergies. Son premier programme, conçu en 1963, s'appelait Schoonship (« vaisseau propre » en néerlandais).

Ces systèmes sont devenus populaires au début des années 1970 et ont mené la création de l'IA. En 2006, ils sont vus comme des champs d'étude distincts.

Les premiers systèmes à devenir populaires sont Reduce, Derive et Macsyma, qui sont encore disponibles. Une version gratuite de Macsyma sous licence GNU appelée Maxima est encore maintenue.

Les meneurs dans ce marché sont Maple et Mathematica. Les deux sont couramment utilisés par les mathématiciens, les scientifiques et les ingénieurs. MuPAD et Mathcad sont aussi disponibles.

Le fonctionnement du logiciel libre Giac / Xcas est proche de celui des calculatrices formelles Texas-Instruments. Le système de calcul formel Axiom initialement développé par IBM a cessé d'être commercialisé en 2001 et est devenu un logiciel libre depuis 2002. Les projets FriCAS et OpenAxiom commencés en 2007 sont directement issus du programme Axiom initial.

D'autres systèmes sont plus spécialisés et se limitent à quelques domaines d'application. Ils sont habituellement conçus, développés et maintenus dans un milieu académique.

Quelques logiciels de calcul formel

Mathématiques utilisées

Source

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Syst%C3%A8me de calcul formel ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Computer algebra system de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Computer algebra system — A computer algebra system (CAS) is a software program that facilitates symbolic mathematics. The core functionality of a CAS is manipulation of mathematical expressions in symbolic form. Contents 1 Symbolic manipulations 2 Additional capabilities …   Wikipedia

  • Computer-Algebra-System — Ein Computeralgebrasystem (CAS) ist ein Computerprogramm das Methoden der Computeralgebra nutzt. Konkreter kann es Rechenaufgaben aus verschiedenen Bereichen der Mathematik lösen und dabei nicht nur (wie ein Taschenrechner) mit Zahlen, sondern… …   Deutsch Wikipedia

  • Axiom (computer algebra system) — Scratchpad redirects here. For scratchpad memory, see Scratchpad RAM. Axiom Developer(s) independent group of people Stable release September 2011 Operating system cross platform …   Wikipedia

  • Magma computer algebra system — Magma Developer(s) Computational Algebra Group, School of Mathematics and Statistics, University of Sydney Stable release 2.17 8 / May 27, 2011 Operating system …   Wikipedia

  • Derive (computer algebra system) — Derive Developer(s) Texas Instruments Stable release 6.1 Development status Discontinued Written in muLISP Operatin …   Wikipedia

  • Dynamic Computer Algebra System — Dcas is a dynamic computer algebra system featuring the idea of using identities as rules for manipulation of algebra. Robert Fenichel developed a system called FAMOUS in the 1970s using the LISP programming language pursuing the same aim. A… …   Wikipedia

  • Fermat (computer algebra system) — Infobox Software name = Fermat caption = developer = Robert H. Lewis latest release version = 3.9.7 latest release date = May 6 2008 programming language = C operating system = Mac OS X, Mac OS, Linux, Unix, Windows genre = Computer algebra… …   Wikipedia

  • Axiom computer algebra system — Infobox Software name = Axiom developer = Independent group of people operating system = Cross Platform genre = Computer Algebra System license = modified BSD License website = [http://axiom.axiom developer.org Axiom Home Page] Axiom is a free… …   Wikipedia

  • Reduce (computer algebra system) — REDUCE is a general purpose computer algebra system geared towardsapplications in physics.The development of the REDUCE computer algebra system was started in the 1960s by Anthony C. Hearn. Since then, many Fact|date=August 2008 scientists from… …   Wikipedia

  • GAP computer algebra system — GAP (Groups, Algorithms and Programming) is a computer algebra system for computational discrete algebra with particular emphasis on, but not restricted to, computational group theory. GAP was developed at Lehrstuhl D für Mathematik (LDFM), RWTH… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”