Un A1-A2-bimodule est un ensemble M muni à la fois d'une structure de module à gauche sur un anneau A1 et d'une structure de module à droite sur un anneau A2 vérifiant

\forall a \in A_1,\quad \forall x \in M,\quad \forall b \in A_2,\quad a.(x.b) = (a.x).b.


  • Tout A-module à droite est aussi un \mathbb Z-A-bimodule
  • A est un A-A bimodule
  • Si A est commutatif, tout A-module peut être vu comme un A-A bimodule. Plus généralement, pour A quelconque, un A-module à gauche peut être vu comme un AAop bimodule.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Bimodule de Wikipédia en français (auteurs)

Regardez d'autres dictionnaires:

  • Bimodule — In abstract algebra a bimodule is an abelian group that is both a left and a right module, such that the left and right multiplications are compatible. Besides appearing naturally in many parts of mathematics, bimodules play a clarifying role, in …   Wikipedia

  • bimodule — noun An abelian group that is both a left and a right module, such that the left and right multiplications are compatible …   Wiktionary

  • Tensor product of modules — In mathematics, the tensor product of modules is a construction that allows arguments about bilinear maps (roughly speaking, multiplication ) to be carried out in terms of linear maps (module homomorphisms). The module construction is analogous… …   Wikipedia

  • Noetherian module — In abstract algebra, an Noetherian module is a module that satisfies the ascending chain condition on its submodules, where the submodules are partially ordered by inclusion. Historically, Hilbert was the first mathematician to work with the… …   Wikipedia

  • Subfactor — In the theory of von Neumann algebras, a subfactor of a factor M is a subalgebra that is a factor and contains 1. The theory of subfactors led to the discovery of the Jones polynomial in knot theory.Index of a subfactorUsually M is taken to be a… …   Wikipedia

  • Von Neumann algebra — In mathematics, a von Neumann algebra or W* algebra is a * algebra of bounded operators on a Hilbert space that is closed in the weak operator topology and contains the identity operator. They were originally introduced by John von Neumann,… …   Wikipedia

  • Morita equivalence — In abstract algebra, Morita equivalence is a relationship defined between rings that preserves many ring theoretic properties. It is named after Japanese mathematician Kiiti Morita who defined equivalence and a similar notion of duality in 1958.… …   Wikipedia

  • Hochschild homology — In mathematics, Hochschild homology is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Definition of Hochschild homology of algebras Let k be a ring, A an associative k… …   Wikipedia

  • Connection (algebraic framework) — Geometry of quantum systems (e.g., noncommutative geometry and supergeometry) is mainly phrased in algebraic terms of modules and algebras. Connections on modules are generalization of a linear connection on a smooth vector bundle written as a… …   Wikipedia

  • Dual d'un module — En algèbre commutative et plus généralement en théorie des anneaux, le dual d un module A par rapport à un module B (sur un anneau R) est l ensemble des homomorphismes de A dans B. Il est noté Hom(A,B). Si le module B n est pas spécifié, par… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”