Test de Student

Test de Student

Loi de Student

Loi de Student
Densité de probabilité / Fonction de masse
Student densite best.JPG
Fonction de répartition
T distributionCDF.png
Paramètres k ≥ 1 degrés de liberté,
Support x \in ]-\infty; +\infty[\,
Densité de probabilité (fonction de masse) f_T(t)= \frac{1}{\sqrt{k\pi}}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})}\frac{1}{(1+\frac{t^2}{k})^{\frac{k+1}{2}}}
Fonction de répartition 1-γ = ƒ(tγk ), voir tableau en fin d'article
Espérance si k = 1 : non définie

si k > 1 : 0

Médiane (centre) 0
Mode 0
Variance si k ≤ 2 : +\infty

si k > 2 : \frac{k}{k-2}

Asymétrie (statistique) 0 pour k > 3
Kurtosis (non-normalisé)
Entropie
Fonction génératrice des moments
Fonction caractéristique

La loi de Student est une loi de probabilité, faisant intervenir le quotient entre une variable suivant une loi normale centrée réduite et la racine carrée d'une variable distribuée suivant la loi du χ².

Soit Z une variable aléatoire de loi normale centrée et réduite et soit U une variable indépendante de Z et distribuée suivant la loi du χ² à k degrés de liberté. Par définition la variable

T = \frac{Z}{\sqrt{U/k}}

suit une loi de Student à k degrés de liberté.

La densité de \scriptstyle\ T, notée \scriptstyle\ f_T, est donnée par :

f_T(t)=\frac{1}{\sqrt{k\pi}}\frac{\Gamma(\frac{k+1}{2})}{\Gamma(\frac{k}{2})}\frac{1}{(1+\frac{t^2}{k})^{\frac{k+1}{2}}}, pour k ≥ 1.

où Γ est la fonction Gamma d'Euler.

La densité \scriptstyle\ f_T\ associée à la variable \scriptstyle\ T\ est symétrique, centrée sur 0, en forme de cloche.

Son espérance ne peut pas être définie pour k = 1, et est nulle pour k > 1.

Sa variance est infinie pour k ≤ 2 et vaut \frac{k}{k-2} pour k > 2.

Sommaire

Histoire

Le calcul de la distribution de Student a été publié en 1908 par William Gosset pendant qu'il travaillait à la brasserie Guinness à Dublin. Il lui était interdit de publier sous son propre nom, c'est pour cette raison qu'il publia sous le pseudonyme de Student. Le test-t et de la théorie est devenue célèbre grâce aux travaux de Ronald Fisher, qui a qualifié cette distribution de « distribution de Student ».

Comportement limite

Lorsque k est grand, la loi de Student peut être approchée par la loi normale centrée réduite.

Application : intervalle de confiance associé à l’espérance d’une variable de loi normale de variance inconnue

Ce chapitre présente une méthode pour déterminer l'intervalle de confiance de l'estimateur de l’espérance μ d’une loi normale dont la variance σ² est inconnue.

Théorème — L'intervalle de confiance de μ au seuil de confiance α est donné par:  \left[\,\overline{x} - t_{(1 - \alpha)/2}^{n-1}\sqrt{\frac{S}{n}\,}, \overline{x} + t_{(1 - \alpha)/2}^{n-1}\sqrt{\frac{S}{n}}\,\right] ,

avec

\overline{x} = \frac{1}{n} \Sigma_{i=1}^n x_i, l'estimateur de l'espérance.
S =  \frac{1}{n-1}\Sigma_{i=1}^n (x_i - \overline{x}) ^2, l'estimateur non-biaisé de la variance.
t_{\gamma}^{k} le quantile d’ordre 1-γ de la loi de Student à k degrés de liberté (dont la définition exacte est donnée ci-dessus).

Distributions apparentées

Tableau des valeurs du quantile

Un tableau des valeurs du quantile en fonction de γ et k est fourni ci-dessous.

ν 75% 80% 85% 90% 95% 97.5% 99% 99.5% 99.75% 99.9% 99.95%
1 1.000 1.376 1.963 3.078 6.314 12.71 31.82 63.66 127.3 318.3 636.6
2 0.816 1.061 1.386 1.886 2.920 4.303 6.965 9.925 14.09 22.33 31.60
3 0.765 0.978 1.250 1.638 2.353 3.182 4.541 5.841 7.453 10.21 12.92
4 0.741 0.941 1.190 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.727 0.920 1.156 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869
6 0.718 0.906 1.134 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.711 0.896 1.119 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408
8 0.706 0.889 1.108 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.703 0.883 1.100 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781
10 0.700 0.879 1.093 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587
11 0.697 0.876 1.088 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.695 0.873 1.083 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.694 0.870 1.079 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221
14 0.692 0.868 1.076 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.691 0.866 1.074 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073
16 0.690 0.865 1.071 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.689 0.863 1.069 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.688 0.862 1.067 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922
19 0.688 0.861 1.066 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.687 0.860 1.064 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850
21 0.686 0.859 1.063 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.686 0.858 1.061 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.685 0.858 1.060 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.685 0.857 1.059 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.684 0.856 1.058 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725
26 0.684 0.856 1.058 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.684 0.855 1.057 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.683 0.855 1.056 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.683 0.854 1.055 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.683 0.854 1.055 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.681 0.851 1.050 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
50 0.679 0.849 1.047 1.299 1.676 2.009 2.403 2.678 2.937 3.261 3.496
60 0.679 0.848 1.045 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460
80 0.678 0.846 1.043 1.292 1.664 1.990 2.374 2.639 2.887 3.195 3.416
100 0.677 0.845 1.042 1.290 1.660 1.984 2.364 2.626 2.871 3.174 3.390
120 0.677 0.845 1.041 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
\infty 0.674 0.842 1.036 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

Remarque : la dernière ligne du tableau ci-dessus correspond aux grandes valeurs de k. Il s’agit d’un cas limite pour lequel la loi de Student est équivalente à la loi normale centrée et réduite.

Notes


Voir aussi

Articles connexes

Liens externes

Ce document en français contient en particulier la dérivation de l'expression de la densité de probabilité ƒT, la démonstration de la distribution de la variable s suivant la loi de Student à n-1 degrés de liberté, ainsi que la démonstration de l'indépendance de s et Z.
  • Portail des probabilités et des statistiques Portail des probabilités et des statistiques
Ce document provient de « Loi de Student ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Test de Student de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Test d'hypothese — Test d hypothèse En statistiques, un test d hypothèse est une démarche consistant à rejeter (ou plus rarement à accepter) une hypothèse statistique, appelée hypothèse nulle, en fonction d un jeu de données (échantillon). On cherche par exemple à… …   Wikipédia en Français

  • Student's t-test — A t test is any statistical hypothesis test in which the test statistic follows a Student s t distribution if the null hypothesis is supported. It is most commonly applied when the test statistic would follow a normal distribution if the value of …   Wikipedia

  • Test t — Pour la loi de probabilité, voir Loi de Student. Le test t, ou test de Student désigne un ensemble de tests d’hypothèse paramétriques où la statistique calculée suit une loi de Student lorsque l’hypothèse nulle est vraie. Un test t peut être… …   Wikipédia en Français

  • Test (statistique) — Pour les articles homonymes, voir Test. En statistiques, un test d hypothèse est une démarche consistant à rejeter ou à ne pas rejeter (rarement accepter) une hypothèse statistique, appelée hypothèse nulle, en fonction d un jeu de données… …   Wikipédia en Français

  • Test d'hypothèse — En statistiques, un test d hypothèse est une démarche consistant à évaluer une hypothèse statistique en fonction d un jeu de données (échantillon). Par exemple, ayant observé un certain nombre de tirages « pile ou face » produit par un… …   Wikipédia en Français

  • Student — William Gosset William Sealy Gosset, 1876 1937 William Sealy Gosset (13 juin 1876 – 16 octobre 1937) connu sous le pseudonyme Student est un statisticien anglais. Employé de la brasserie Guinness pour stabiliser le goût de la bière, il a ainsi… …   Wikipédia en Français

  • Test of General Academic Prerequisites — The Test of General Academic Prerequisites is an important part of the National Comparative Exams. For a university, the deciding factor is not the extent to which an applicant has mastered the basics of a given field of study, but rather the… …   Wikipedia

  • Test anxiety — is a psychological condition in which a person experiences distress before, during, or after an exam or other assessment to such an extent that this anxiety causes poor performance or interferes with normal learning.ymptoms*Physical headaches,… …   Wikipedia

  • Test — Test, TEST or Tester may refer to:In science:* Experiment, part of the scientific method * Test (biology), the shell of sea urchins and certain microorganisms * Test method, a definitive procedure that produces a test result * Chemical test, a… …   Wikipedia

  • Test — Test, v. t. [imp. & p. p. {Tested}; p. pr. & vb. n. {Testing}.] 1. (Metal.) To refine, as gold or silver, in a test, or cupel; to subject to cupellation. [1913 Webster] 2. To put to the proof; to prove the truth, genuineness, or quality of by… …   The Collaborative International Dictionary of English

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”