Radar À Synthèse D'ouverture

Radar À Synthèse D'ouverture

Radar à synthèse d'ouverture

Un radar à synthèse d'ouverture (RSO) est un radar imageur qui effectue un traitement des données reçues afin d'améliorer la résolution azimutale. Le traitement effectué permet d'affiner l'ouverture de l'antenne. On parle donc de synthèse d'ouverture. D'où le nom de ce type de système.

Les radars à synthèse d'ouverture sont donc à opposer aux "radars à ouverture réelle" (RAR ou real aperture radar en anglais) pour lesquelles la résolution azimutale est simplement obtenue en utilisant une antenne d'émission/réception possédant un lobe d'antenne étroit dans la direction azimutale.

L'abréviation anglo-saxone SAR (Synthetic Aperture Radar) est fréquemment utilisée pour désigner ce type de radar.

On distingue deux grandes familles de RSO :

  • les RSO mono statiques pour lesquels une seule antenne est utilisée en émission et réception
  • les RSO bi ou multi statiques pour lesquels des antennes différentes sont utilisées en émission et réception

Sommaire

Principe

Principe de fonctionnement du RSO. Le point P est illuminé plusieurs fois par le radar en mouvement.

L'antenne du radar est fixée sur une face latérale d'un porteur (avion ou satellite). Elle a une ouverture azimutale assez grande (plusieurs degrés) dans la direction du mouvement et latéralement elle peut aller de l'horizon à la verticale ce qui donne une résolution assez faible. Le temps de retour des échos s'effectuant à différents temps selon leur distance au radar, on peut donc obtenir une image grossière du sol si on ne sonde que dans une direction fixe[1].

Comme le radar se déplace, le même point est cependant illuminé plusieurs fois, on obtient une série de données pour chaque point sous le radar. En combinant la variation d'amplitude et de phase de ces retours, le traitement de synthèse d'ouverture permet d'obtenir des images des zones observées comme si on utilisait une large antenne à très grande résolution[1]. Comme le traitement se fait par transformée de Fourier, il est en général calculé en postraitement ou en traitement à distance par un ordinateur puissant.

Explication

En fait l'antenne du radar est relativement petite et donc du sol un signal qui est la résultante, en amplitude et phase, de tous les échos générés par tous les points éclairés par l'impulsion émise : l'intégrale (au sens mathématique du terme) de l'espace éclairé. Le signal reçu est donc UN point de la transformée de Fourier du sol éclairé. Comme le radar se déplace avec son porteur, avion ou satellite, il reçoit d'autres points de cette transformée. Il suffit d'enregistrer tous ces points et d'en faire ensuite la transformée inverse pour reconstituer le relief en trois dimensions du sol (3D).

On peut ainsi à l'aide d'un ordinateur faire pivoter le paysage et le voir sous tous les angles comme le voyait le pilote du radar aéroporté quand il survolait le terrain. Le résultat est cependant dépendant de deux hypothèses :

  1. Il faut que le vol du porteur soit parfaitement stable : vitesse constante, altitude constante, etc. Facile à obtenir pour un satellite, mais plus difficile pour le vol d'un avion soumis aux turbulences atmosphériques ;
  2. Il faut que la stabilité des oscillateurs de démodulation du signal soit parfaite pour assurer une relation de phase correcte entre tous les signaux reçus pendant le passage sur une zone. Relativement facile aujourd'hui pour un équipement fixe, plus difficile quand il s'agit d'équipements aéroportés.

Avant le développement des ordinateurs récents, on utilisait une technique holographique pour traiter les données. Un patron holographique d'interférences, ayant une échelle de projection donnée par rapport au terrain (ex. 1:1 000 000 pour un radar de 0,6 m de résolution), était produit à partir des données brutes du radar. Une fois le terrain illuminé par un laser ayant le même rapport d'échelle, la résultante était une projection du terrain en trois dimensions, un peu comme une projection stéroscopique.

Applications simples

Cependant, pour les applications les plus simples, la donnée de phase est rejetée et on obtient ainsi une carte plane en deux dimensions de la zone sondée.

Applications plus complexes

Polarimétrie

Plusieurs images simultanées sont générées en utilisant des faisceaux polarisés différents, habituellement orthogonaux[2]. Comme les cibles rencontrées (sol, feuillage, édifices, etc.) ont des propriétés polarisantes différentes, l'intensité venant des différentes ondes va varier avec le type de cibles rencontrées (matériaux, formes, mécanismes de "rebonds"). On étudie alors les différences d'intensité et de phases entre les images générées à partir de ces différentes polarisations pour en déduire des paramètres descriptifs de la scène imagée. On peut ainsi rehausser les contrastes de certains détails non visibles sur des images classiques (non polarimétriques), ou déduire des propriétés de la cible telles que le type de végétation[3].

Interférométrie

On utilise simultanément deux radars à synthèse d'ouverture, ou bien le même radar est utilisé à des instants différents. On étudie alors les différences de phase point à point des images générées pour retrouver la dimension verticale du terrain[4]. On parle alors de SAR interférométrique ou InSAR.

Cette méthode permet de générer des modèles numériques d'élévation, ou bien, en soustrayant un modèle numérique de terrain, de mesurer des déplacements centimétriques dans les zones où le signal reste cohérent (Interférométrie radar différentielle) La cohérence des zones dépend de la géométrie d'acquision des images radars, mais aussi de la nature de la zone: en bande C (ENVISAT, Radarsat) les zones urbaines sont généralement adaptées au traitement InSAR tandis que les zones couvertes de végétations sont incohérentes.

Radargrammétrie

Basée sur le principe de la stéréoscopie, la radargrammétrie consiste à reconstruire le relief à partir de deux images radar de la même zone, acquises avec des angles de visée différents. Moins précise que l'interférométrie, cette méthode est toutefois moins contraignante concernant les conditions d'acquisitions[5].

Voir aussi

Liens externes

Notes et références

  1. a  et b (fr)Radar à synthèse d'ouverture, Ressources naturelles Canada
  2. (fr)Notions fondamentales de la polarimétrie par radar à synthèse d'ouverture, Ressources naturelles Canada
  3. (fr)Polarisation radar, Ressources naturelles Canada
  4. (fr)Interférométrie polarimétrique, Ressources naturelles Canada
  5. (fr)Véronique Ansam, « Radargrammétrie », 2004-12-23, Phototèque planétaire d'Orsay, Université Paris-Sud XI


  • Portail de la physique Portail de la physique
  • Portail de l’aéronautique Portail de l’aéronautique

Ce document provient de « Radar %C3%A0 synth%C3%A8se d%27ouverture ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Radar À Synthèse D'ouverture de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Radar a synthese d'ouverture — Radar à synthèse d ouverture Un radar à synthèse d ouverture (RSO) est un radar imageur qui effectue un traitement des données reçues afin d améliorer la résolution azimutale. Le traitement effectué permet d affiner l ouverture de l antenne. On… …   Wikipédia en Français

  • Radar à synthèse d'ouverture — Image prise par un RSO, monté sur satellite, de l île de Ténérife aux îles Canaries, montrant les détails géographiques et la végétation en fausses couleurs Un radar à synthèse d ouverture (RSO) est un radar imageur qui effectue un traitement des …   Wikipédia en Français

  • Synthese d'ouverture — Synthèse d ouverture La plupart des systèmes utilisant la synthèse d ouverture tirent avantage de la rotation de la Terre pour augmenter le nombre d angles de vue dans l observation. Ici, les télescopes A et B se déplacent avec le temps : en …   Wikipédia en Français

  • Synthèse d'ouverture — La plupart des systèmes utilisant la synthèse d ouverture tirent avantage de la rotation de la Terre pour augmenter le nombre d angles de vue dans l observation. Ici, les télescopes A et B se déplacent avec le temps : en enregistrant les… …   Wikipédia en Français

  • Radar À Ouverture De Synthèse — Radar à synthèse d ouverture Un radar à synthèse d ouverture (RSO) est un radar imageur qui effectue un traitement des données reçues afin d améliorer la résolution azimutale. Le traitement effectué permet d affiner l ouverture de l antenne. On… …   Wikipédia en Français

  • Radar à ouverture de synthèse — Radar à synthèse d ouverture Un radar à synthèse d ouverture (RSO) est un radar imageur qui effectue un traitement des données reçues afin d améliorer la résolution azimutale. Le traitement effectué permet d affiner l ouverture de l antenne. On… …   Wikipédia en Français

  • Radar À Ouverture Synthétique — Radar à synthèse d ouverture Un radar à synthèse d ouverture (RSO) est un radar imageur qui effectue un traitement des données reçues afin d améliorer la résolution azimutale. Le traitement effectué permet d affiner l ouverture de l antenne. On… …   Wikipédia en Français

  • Radar à ouverture synthétique — Radar à synthèse d ouverture Un radar à synthèse d ouverture (RSO) est un radar imageur qui effectue un traitement des données reçues afin d améliorer la résolution azimutale. Le traitement effectué permet d affiner l ouverture de l antenne. On… …   Wikipédia en Français

  • RADAR — Pour les articles homonymes, voir Radar (homonymie). Cette antenne radar longue portée, connue sous le nom ALTAIR, est utilisée pour détecter et pister les objets spatiaux …   Wikipédia en Français

  • Radar embarqué — Radar Pour les articles homonymes, voir Radar (homonymie). Cette antenne radar longue portée, connue sous le nom ALTAIR, est utilisée pour détecter et pister les objets spatiaux …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”