Intérieur (topologie)

Intérieur (topologie)
Page d'aide sur l'homonymie Pour les articles homonymes, voir intérieur.

En mathématiques, l'intérieur est une notion de topologie appliquée à une partie d'un espace topologique. On définit aussi et de façon différente l'intérieur d'une variété à bord.

Soit E un espace topologique et A une partie de X. On appelle intérieur de A le plus grand ouvert de X inclus dans A, c'est la réunion de tous les ouverts inclus dans A. L'intérieur se note soit à l'aide d'un petit cercle suscrit, soit par une notation préfixe avec l'abréviation int :

\stackrel{\ \circ}{A} = \mathrm{int}(A)

Sommaire

Topologie générale

Point intérieur

Soit X un espace topologique, A une partie de X et a un élément de X. On dit que a est un point intérieur à A ssi A est un voisinage de a.

On remarque que les points intérieurs à A sont dans A. De plus l'intérieur de A est égal à l'ensemble des points intérieurs à A.

Un point non intérieur à A est adhérent à X\setminus A.

Propriétés

  • Une partie est ouverte si et seulement si elle est égale à son intérieur ;
  • idempotence : l'intérieur de l'intérieur est égal à l'intérieur ;
  • croissance pour l'inclusion : si A est une sous-partie de B alors int(A) est une sous-partie de int(B).
  • L'intérieur d'une intersection est égale à l'intersection des intérieurs.
  • le complémentaire de l'intérieur est l'adhérence du complémentaire.
  • Une union d'intérieurs est incluse dans l'intérieur de l'union mais l'inclusion inverse n'est pas toujours vraie.

Exemples

  • Dans n'importe quel espace topologique, l'intérieur de l'ensemble vide est l'ensemble vide.
  • Soit X un espace topologique, l'intérieur de X est égal à X.
  • Dans l'espace euclidien R des nombres réels muni de la topologie usuelle :
    • l'intérieur du segment [0, 1] est l'intervalle ouvert ]0, 1[ ;
    • l'intérieur de l'ensemble Q des nombres rationnels est vide.
  • Dans l'espace des nombres complexes, alors l'intérieur de l'ensemble {zC / |z| ≥ 1} est l'ensemble {zC / |z| > 1}.
  • Dans tout espace euclidien, l'intérieur d'un ensemble fini est l'ensemble vide.
  • Dans une espace discret où toute partie est ouverte, toute partie est son propre intérieur.
  • Dans un espace muni de la topologie grossière où les seuls ouverts sont l'espace total et l'ensemble vide, toute partie stricte est d'intérieur vide.

L'intérieur d'une partie dépend de la topologie considérée. Dans le cas de R :

  • muni de la topologie usuelle, int([0, 1]) = ]0,1[.
  • muni de la topologie discrète, int([0, 1]) = [0, 1].
  • muni de la topologie grossière int([0, 1]) est l'ensemble vide.

Voir aussi

Sur les autres projets Wikimedia :


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Intérieur (topologie) de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Interieur (topologie) — Intérieur (topologie) Pour les articles homonymes, voir intérieur. En mathématiques, l intérieur est une notion de topologie appliquée à une partie d un espace topologique ou à une variété à bord. Dans le premier cas, l intérieur d une partie est …   Wikipédia en Français

  • Intérieur (mathématiques) — Intérieur (topologie) Pour les articles homonymes, voir intérieur. En mathématiques, l intérieur est une notion de topologie appliquée à une partie d un espace topologique ou à une variété à bord. Dans le premier cas, l intérieur d une partie est …   Wikipédia en Français

  • Interieur — Intérieur Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom …   Wikipédia en Français

  • Topologie de la droite réelle — Richard Dedekind (1831 1916) a défini rigoureusement les nombres réels et posé les bases de leur étude topologique. La topologie de la droite réelle (ou topologie usuelle de R) est une structure mathématique qui donne, pour l ensemble des nombres …   Wikipédia en Français

  • Intérieur — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Intérieur », sur le Wiktionnaire (dictionnaire universel) En mathématiques et selon le contexte, l… …   Wikipédia en Français

  • TOPOLOGIE - Topologie générale — Les notions de continuité et de limite ont une origine intuitive et l’on se propose d’analyser ici cette intuition. Considérons, par exemple, la description de la tangente T à une courbe (fig. 1) telle qu’on la trouve dans les manuels classiques… …   Encyclopédie Universelle

  • TOPOLOGIE - Topologie différentielle — La topologie différentielle, que l’on devrait plutôt appeler «topologie des variétés », est une discipline mathématique assez ancienne par les problèmes qu’elle cherche à résoudre: ils étaient presque tous posés au début du siècle; mais ses… …   Encyclopédie Universelle

  • Topologie de reseau — Topologie de réseau Pour les articles homonymes, voir Topologie. Une topologie de réseau est en informatique une définition de l architecture d un réseau. Elle donne une certaine disposition des différents postes informatiques du réseau et une… …   Wikipédia en Français

  • Topologie réseau — Topologie de réseau Pour les articles homonymes, voir Topologie. Une topologie de réseau est en informatique une définition de l architecture d un réseau. Elle donne une certaine disposition des différents postes informatiques du réseau et une… …   Wikipédia en Français

  • Topologie grossiere — Topologie grossière En mathématiques, la topologie grossière (ou topologie triviale) associée à un ensemble est une topologie où les seuls ouverts sont l ensemble vide et l espace lui même. Cette topologie est la moins fine de toutes les… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”