Intérieur (mathématiques)

Intérieur (mathématiques)

Intérieur (topologie)

Page d'aide sur l'homonymie Pour les articles homonymes, voir intérieur.

En mathématiques, l'intérieur est une notion de topologie appliquée à une partie d'un espace topologique ou à une variété à bord.

Dans le premier cas, l'intérieur d'une partie est sa plus grande sous-partie ouverte. Il est constitué des points de cette partie qui ne « touchent » pas le complémentaire, au sens où ils admettent un voisinage qui en est disjoint.
Cette définition s'applique en particulier aux parties d'espace métrique ou d'espace euclidien.

L'intérieur d'une variété à bord est défini comme le complémentaire du bord. Dans ce cas il est intrinsèque, au sens où il ne dépend pas d'un plongement de la variété dans un espace plus grand. Cependant, les deux définitions coïncident pour une variété compacte plongée en codimension zéro.

Dans les deux cas, l'intérieur se note soit à l'aide d'un petit cercle suscrit, soit par une notation préfixe avec l'abréviation int :

\stackrel{\ \circ}{A} = \mathrm{int}(A)

Sommaire

Topologie générale

Constructions équivalentes

La définition de l'intérieur d'une partie comme la plus grande sous-partie ouverte nécessite une démonstration de son existence.

La réunion de tous les ouverts inclus dans une partie forme elle-même un ouvert inclus dans cette partie. Par construction, elle inclut tous les autres, c'est donc une construction de l'intérieur de la partie.

Il est aussi possible de définir les points intérieurs d'une partie comme les points dont la partie est un voisinage. Tous ces points intérieurs appartiennent donc à des ouverts inclus dans la partie donc appartiennent à l'intérieur. Réciproquement, l'intérieur est un voisinage de tous ses points donc ne contient que des points intérieurs. Finalement, l'intérieur peut aussi se définir comme l'ensemble des points intérieurs.

Propriétés

  • Une partie est ouverte si et seulement si elle est égale à son intérieur ;
  • idempotence : l'intérieur de l'intérieur est égal à l'intérieur ;
  • croissance pour l'inclusion : si A est une sous-partie de B alors int(A) est une sous-partie de int(B).

Exemples

  • Dans n'importe quel espace topologique, l'intérieur de l'ensemble vide est l'ensemble vide.
  • Dans l'espace euclidien R des nombres réels muni de la topologie usuelle :
    • l'intérieur du segment [0, 1] est l'intervalle ouvert ]0, 1[ ;
    • l'intérieur de l'ensemble Q des nombres rationnels est vide.
  • Dans l'espace des nombres complexes, alors l'intérieur de l'ensemble {zC / |z| ≥ 1} est l'ensemble {zC / |z| > 1}.
  • Dans tout espace euclidien, l'intérieur d'un ensemble fini est l'ensemble vide.
  • Dans une espace discret où toute partie est ouverte, toute partie est son propre intérieur.
  • Dans un espace muni de la topologie grossière où les seuls ouverts sont l'espace total et l'ensemble vide, toute partie stricte est d'intérieur vide.

L'intérieur d'une partie dépend de la topologie considérée. Dans le cas de R :

  • muni de la topologie de la limite inférieure, int([0, 1]) = [0, 1)[réf. nécessaire].
  • muni de la topologie discrète, int([0, 1]) = [0, 1].
  • muni de la topologie grossière int([0, 1]) est l'ensemble vide.

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Int%C3%A9rieur (topologie) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Intérieur (mathématiques) de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • MATHÉMATIQUES (FONDEMENTS DES) — Au sens premier et fort, le mot «fondement» désigne la base, jugée inébranlable, sur laquelle repose un corps d’énoncés, un système de connaissances, un complexe de croyances ou de conduites. «Reposer sur la base» signifie ici «trouver en elle à… …   Encyclopédie Universelle

  • Interieur (topologie) — Intérieur (topologie) Pour les articles homonymes, voir intérieur. En mathématiques, l intérieur est une notion de topologie appliquée à une partie d un espace topologique ou à une variété à bord. Dans le premier cas, l intérieur d une partie est …   Wikipédia en Français

  • MATHÉMATIQUES , DE LA DIVERSITÉ À L’UNIFICATION — «Ce que nous appelons la réalité objective, c’est, en dernière analyse, ce qui est commun à plusieurs êtres pensants, et pourrait être commun à tous; cette partie commune [...], ce ne peut être que l’harmonie exprimée par des lois mathématiques.» …   Encyclopédie Universelle

  • MATHÉMATIQUES (DIDACTIQUE DES) — Les problèmes posés par l’enseignement des mathématiques ne sont pas nouveaux. Au début du siècle, Henri Lebesgue était préoccupé par les conditions de l’enseignement et de la formation des professeurs. Des efforts plus récents se sont déployés… …   Encyclopédie Universelle

  • MATHÉMATIQUES (ENSEIGNEMENT DES) — Les problèmes que pose tout enseignement sont extrêmement complexes; ils sont liés à l’état de la société, à sa structure, à son développement économique et technique et à l’idée qu’elle se fait de son avenir. Les aborder dans leur totalité et… …   Encyclopédie Universelle

  • Interieur — Intérieur Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom …   Wikipédia en Français

  • Intérieur (topologie) — Pour les articles homonymes, voir intérieur. En mathématiques, l intérieur est une notion de topologie appliquée à une partie d un espace topologique. On définit aussi et de façon différente l intérieur d une variété à bord. Soit E un espace… …   Wikipédia en Français

  • Intérieur relatif — En mathématiques et plus précisément en topologie, l intérieur relatif est l intérieur d un ensemble, relativement à son enveloppe affine. Cette notion est couramment utilisée en analyse convexe et s applique à des parties d ensembles convexes,… …   Wikipédia en Français

  • Intérieur — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sur les autres projets Wikimedia : « Intérieur », sur le Wiktionnaire (dictionnaire universel) En mathématiques et selon le contexte, l… …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”