Integrale d'Euler
- Integrale d'Euler
-
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Integrale d'Euler de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Intégrale d'Euler — En mathématiques, on désigne par intégrales d Euler ou intégrales eulériennes deux types d intégrales : L intégrale d Euler de première espèce aussi appelée fonction bêta : L intégrale d Euler de seconde espèce aussi appelée fonction… … Wikipédia en Français
Intégrale à paramètre — Intégrale paramétrique En mathématiques, une intégrale paramétrique (également appelée intégrale à paramètre) est une fonction définie à partir de l intégration d une fonction de plusieurs variables sur un ensemble fixe par rapport à une partie… … Wikipédia en Français
Intégrale à paramètres — Intégrale paramétrique En mathématiques, une intégrale paramétrique (également appelée intégrale à paramètre) est une fonction définie à partir de l intégration d une fonction de plusieurs variables sur un ensemble fixe par rapport à une partie… … Wikipédia en Français
Integrale indefinie — Intégrale indéfinie En analyse réelle ou complexe, une intégrale indéfinie d une fonction f intégrable sur un intervalle I est une fonction définie sur I par où a est un élément de I et K une constante[1] Lorsque f est une fonction continue, F… … Wikipédia en Français
Intégrale Indéfinie — En analyse réelle ou complexe, une intégrale indéfinie d une fonction f intégrable sur un intervalle I est une fonction définie sur I par où a est un élément de I et K une constante[1] Lorsque f est une fonction continue, F est une primitive de f … Wikipédia en Français
Integrale de Gauss — Intégrale de Gauss Pour tout réel strictement positif α, la fonction (paire) est intégrable sur et : . Cette intégrale est appelée intégrale de Gauss. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi … Wikipédia en Français
Intégrale De Gauss — Pour tout réel strictement positif α, la fonction (paire) est intégrable sur et : . Cette intégrale est appelée intégrale de Gauss. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. La valeur … Wikipédia en Français
Intégrale de gauss — Pour tout réel strictement positif α, la fonction (paire) est intégrable sur et : . Cette intégrale est appelée intégrale de Gauss. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale. La valeur … Wikipédia en Français
Intégrale paramétrique — En mathématiques, et plus précisément en analyse, une intégrale paramétrique (également appelée intégrale à paramètre) est une fonction d une variable, définie à partir d une fonction de deux variables – la variable d intégration et le paramètre… … Wikipédia en Français
Intégrale définie — Table d intégrales Intégrales définies On appelle intégrale définie dans l intervalle [a,b] lorsque est une primitive quelconque de et que et … Wikipédia en Français