Graphe à liens

Graphe à liens

Graphe de liaisons

Un Bond Graph - également appelé Graphe à liens ou Graphe de liaisons - est une représentation graphique d'un système dynamique physique (mécanique, électrique, hydraulique, pneumatique, etc.) qui représente les transferts d'énergie dans le système. Les Bond Graphs sont basés sur le principe de la conservation de la puissance. Les liens d'un Bond Graph sont des symboles qui représentent soit des flux d'énergie, soit des flux d'information.

Le Bond Graph est un outil mathématique utilisé en ingénierie des systèmes. Il permet de modéliser un système piloté afin d'optimiser son dimensionnement et la conception de ses lois de commande.

Comparés à une autre représentation visuelle du système en schéma-bloc, les Bond Graphs ont plusieurs avantages :

  • ils distinguent les flux d'énergie des flux d'information ;
  • puisqu'ils reposent sur le principe de la conservation de l'énergie, ils rendent impossible d'insérer de l'énergie inexistante dans le système ;
  • ils mettent en évidence la causalité entre les efforts (force, tension, pression) et les flux (vitesse, courant, débit). Cette causalité est rajoutée une fois que le schéma initial a été construit, ce qui permet entre autres de détecter des phénomènes modélisés qui ne sont pas physiques tels qu'imposer un courant dans une bobine, la vitesse d'un volant d'inertie, etc. ;
  • comme chaque lien représente un flux bidirectionnel, les systèmes qui produisent des contre-efforts (exemple : force électromotrice des moteurs) qui agissent sur le système se représentent sans ajout de boucle de contre-réaction.

Si la dynamique du système à modéliser opère sur différentes échelles de temps, les comportements rapides en temps réel peuvent être modélisés comme des phénomènes instantanés en utilisant des Bond Graphs hybrides.

Sommaire

Analogie entre les différents domaines

Les Bond Graphs représentent le transfert de puissance entre éléments, donc ils conviennent parfaitement pour modéliser des systèmes qui relient plusieurs domaines de la physique tels que l'électricité et la mécanique. Mais avant de se lancer dans la modélisation, il faut définir une notion de puissance pour chacun des domaines. Il est nécessaire de définir certaines notions de physique.

  • La puissance

La puissance est le produit d'un flux par un effort.

P(t)=f(t)\cdot e(t)~

  • Le moment

C'est une notion causale liée à l'effort. Ses valeurs futures sont liées à son passé par une intégration.

p(t)=p(0)+\int_{0}^t e(t) \cdot dt~

  • Le déplacement

C'est une notion causale liée au flux. Ses valeurs futures sont liées à son passé par une intégration.

q(t)=q(0)+\int_{0}^t f(t) \cdot dt~

Grâce à ces définitions, nous allons pouvoir définir pour chaque domaine de la physique, la grandeur associée à ces définitions.

Représentation des variables pour plusieurs domaines
Domaine Effort (e) Flux (f) Moment (p) Déplacement (q)
Electrique Tension (V) Courant (A) Flux (Wb) Charge (C)
Mécanique en translation Effort (N) Vitesse (m/s) Impulsion (N.s) Déplacement (m)
Mécanique en rotation Couple (Nm) Vitesse (rad/s) Impulsion (Nm.s) Angle (rad)
Hydraulique Pression (Pa) Débit volumique (m3/s) Impulsion de pression (Pa.s) Volume (m3)
Magnétique Force magnéto-motrice (A) Dérivée flux (V) - Flux (Wb)
Chimique Potentiel Chimique (J/mol) Flux molaire (mol/s) - Quantité de matière (mol)
Thermodynamique Température (K) Flux entropique (W/K) - Entropie (J/K)
Acoustique Pression (Pa) Débit acoustique (m3/s) Impulsion de pression (Pa.s) Volume (m3)

Elements constitutifs

Les liaisons

Cet élément permet de symboliser les transferts d'énergie entre les différents processeurs. Il est représenté comme suit :

Une liaison type d'un Bond Graph

On peut remarquer deux éléments sur cette liaison. La lettre e représente la composante effort de la liaison. La lettre f représente la composante flux de la liaison. La multiplication de ces deux termes doit donner la puissance qui transite par la liaison. Cet élément est orienté dans le sens où la puissance est positive.


Les sources d'effort ou de flux

Il existe deux types de sources.

  1. Les sources d'effort notées Se.
  2. Les sources de flux notées Sf.

Ces éléments fournissent une valeur constante de flux ou d'effort selon le cas quelle que soit la valeur de l'autre grandeur (Effort ou flux) fournie. De plus, ces sources peuvent avoir des discontinuités sur la grandeur qu'elles ne garantissent pas. On considère que ces sources sont parfaites, même si cela constitue une approximation par rapport au phénomène réel.

L'élément dissipatif R

L'élément dissipatif est représenté par un R. C'est un objet qui relie le flux et l'effort par une relation indépendante du temps, une fonction mathématique.

u = R(f) ou f = R(u)~

Physiquement, il correspond à un objet dissipatif. Par exemple une résistance dans le cas électrique, un frottement visqueux dans le cas mécanique.

L'élément inertiel I

Le processeur I fait apparaître entre e et f une relation temporelle via une intégration ou une dérivée. Celui-ci peut se décrire de cette façon :

f = \frac{1}{I} \cdot \int_{0}^t e(x)\, \mathrm dx \;ou \;e = I \cdot \frac{df}{dt}

Ce processeur, qui est représenté par un I, peut être soit une inductance dans le cas électrique, soit une inertie dans le cas mécanique.

L'élément capacitif C

Le processeur C fait apparaître entre e et f une relation temporelle via une intégration ou une dérivée. Celui-ci peut se décrire de cette façon :

e = \frac{1}{C} \cdot \int_{0}^t f(x)\, \mathrm dx \;ou \;f = C \cdot \frac{de}{dt}

Ce processeur peut être un condensateur dans le cas électrique, un ressort dans le cas mécanique.

Il est représenté par un C.

Le transformateur

Cet élément permet la transformation des valeurs sans pertes de puissance suivant ces équations avec un rapport m :

e_1 = m \cdot e_2

f_2 = m \cdot f_1

Cet élément est représenté par le symbole suivant : TF Dans le cas électrique, cela peut-être un transformateur ou bien un réducteur dans le cas mécanique.

Le gyrateur

Cet élément permet la transformation des valeurs sans pertes de puissance suivant ces équations avec un rapport g :

e_1 = g \cdot f_2

e_2 = g \cdot f_1

Cet élément est représenté par le symbole suivant : GY Dans le cas électrique, cela peut-être un gyrateur. Les moteurs sont tous des gyrateurs dans leur liaison entre la partie électrique et mécanique.

Laboratoires francophones de recherches sur la modélisation par Bond Graph

Equipes de recherche en France

Les laboratoires de recherche associés aux principaux centres d'enseignements de la modélisation Bond Graph en France sont indiqués ci-dessous :

Equipes de recherche en Suisse

Equipes de recherche en Tunisie

Bibliographie en français

Bibliographie en anglais

  • (en) Gawthrop, P. J. and Ballance, D. J., « Symbolic computation for manipulation of hierarchical bond graphs » in Symbolic Methods in Control System Analysis and Design, N. Munro (ed), IEE, London, 1999, ISBN 0-85296-943-0.
  • (en) Gawthrop, P. J. and Smith, L. P. S., Metamodelling: bond graphs and dynamic systems, Prentice Hall, 1996, ISBN 0-13-489824-9.
  • (en) Karnopp, D. C., Rosenberg, R. C. and Margolis, D. L., System dynamics: a unified approach, Wiley, 1990, ISBN 0-471-62171-4.
  • (en) Thoma, J., Bond graphs: introduction and applications, Elsevier Science, 1975, ISBN 0-08-018882-6.
  • (en) Paynter, H.M. 'An epistemic prehistory of Bond Graphs', 1992.

Liens externes

Ce document provient de « Graphe de liaisons ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Graphe à liens de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Graphe tesseract — Une représentation du graphe tesseract. Nombre de sommets 16 Nombre d arêtes 32 Distribution des degrés 4 régulier Rayon 4 …   Wikipédia en Français

  • Graphe de Hoffman — Représentation du graphe de Hoffman. Nombre de sommets 16 Nombre d arêtes 32 Distribution des degrés 4 régulier Rayon 3 …   Wikipédia en Français

  • Graphe des liaisons — Graphe de liaisons Un Bond Graph également appelé Graphe à liens ou Graphe de liaisons est une représentation graphique d un système dynamique physique (mécanique, électrique, hydraulique, pneumatique, etc.) qui représente les transferts d… …   Wikipédia en Français

  • Graphe de liaisons — Pour les articles homonymes, voir Graphe de liaisons (homonymie). Un graphe de liaisons également appelé graphe à liens ou bond graph est une représentation graphique d un système dynamique physique (mécanique, électrique, hydraulique,… …   Wikipédia en Français

  • Graphe planaire extérieur — Un graphe planaire extérieur maximal, muni d un 3 coloriage. En mathématiques, et plus particulièrement en théorie des graphes, un graphe non orienté est planaire extérieur (ou, par calque de l anglais, outer planar) s il peut être dessiné dans… …   Wikipédia en Français

  • Graphe Petersen — Graphe de Petersen Graphe de Petersen Schéma classique du graphe de Petersen, sous la forme d un pentagone et d un pentagramme concentriques, reliés par cinq rayons. Nombre de sommets 10 Nombre d arêtes 15 Distribution des degrés 3 régulier… …   Wikipédia en Français

  • Graphe diamant — Représentation du graphe diamant. Nombre de sommets 4 Nombre d arêtes 5 Distribution des degrés 2 (2 sommets) 3 (2 sommets) Rayon 1 …   Wikipédia en Français

  • Graphe cuboctaédrique — Représentation du graphe cuboctaédrique. Nombre de sommets 12 Nombre d arêtes 24 Distribution des degrés 4 régulier Rayon …   Wikipédia en Français

  • Graphe de Clebsch — Représentation du graphe de Clebsch Nombre de sommets 16 Nombre d arêtes 40 Distribution des degrés 5 régulier Rayon …   Wikipédia en Français

  • Graphe hexaédrique — Représentation du graphe hexaédrique. Nombre de sommets 8 Nombre d arêtes 12 Distribution des degrés 3 régulier Rayon 3 …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”