Fonction numérique (mathématiques élémentaires)

Fonction numérique (mathématiques élémentaires)

Fonction numérique

Icone math élém.jpg
Cet article fait partie de la série
Mathématiques élémentaires
Algèbre
Logique
Arithmétique
Probabilités
Statistiques

Lorsque nous exprimons quune quantité dépend dune autre quantité nous supposons quil existe un moyen dobtenir cette quantité à partir dune autre. Et si ces quantités sont représentées par des variables, alors une variable est fonction dune autre, quand il y a une règle qui permet dobtenir la valeur de cette variable, à partir de la valeur de lautre.

Exemple: la quantité "chiffre d'affaire" d'une entreprise dépend de la quantité "nb de produits vendus"

Une fonction numérique est une règle qui permet d'associer à un réel un autre nombre réel.
Donnons lexemple dun épicier qui augmente les prix de tous ses articles de 20%. Ajouter à chaque prix 20% du prix, revient à multiplier chaque prix par 120%. La règle que lépicier va appliquer à chaque prix est la multiplication par 1,2 et nous dirons que le nouveau prix est fonction de lancien.

Sommaire

Définition

Une fonction numérique f ou fonction réelle dune variable réelle dune partie D de \mathbb R dans \mathbb R, est une correspondance (ou application) qui à tout élément x de D associe un réel et un seul noté f(x).
Ce réel f(x) est limage de x par f.

Cette partie D de \mathbb R est appelée lensemble de définition de f.

Notation

Nous notons la fonction :


\begin{matrix}
f: & D \subset \mathbb R & \rightarrow & \mathbb R
\\ & x & \mapsto & f(x)
\end{matrix}

(observez que la seconde flèche possède un poussoir que n'a pas la première)

ou plus simplement f:  x  \mapsto  f(x)

Exemple

Soit la fonction qui à tout nombre réel de l'intervalle [ 1; + 1] associe son carré diminué de 1.

Nous pouvons définir la fonction f des manières suivantes :

Soit f définie par :

pour tout réel x dans  [ -1 ; +1 ],\ f(x) = x^2 - 1 ~

ou encore :

\begin{matrix}f: & [-1;1] & \rightarrow & \mathbb R\\ & x & \mapsto & f(x) = x^2-1\end{matrix}

Remarque

Nous ne devons pas confondre f et f(x). Dans lexemple précédent f est la règle qui élève un réel au carré et lui retranche 1, tandis que f(x) est égal au réel x²-1 qui est associé à x.

Ensemble de définition

Soit f une fonction de D dans \mathbb R.
Soit x un réel. Si x appartient à D, alors on dit que f est définie en x, et si x nappartient pas à D on dit que f nest pas définie en x.

Remarques

  • L'ensemble de définition d'une fonction peut être donné dans l'énoncé définissant la fonction et sinon il doit être déterminé.
  • Rechercher lensemble de définition ou le domaine de définition dune fonction, cest déterminer les réels x tels que f(x) existe.

Erreurs classiques

Bon nombre de lycéens tiennent pour vraie la relation f(a+b)=f(a)+f(b:

  • pour la fonction carré, cela donnerait (a+b)²=a²+b², ce qui est faux (voir identité remarquable) ;
  • pour la fonction sinus, cela donnerait sin(a+b)=sin(a)+sin(b) donc 0=sin(180°)=sin(90°+90°)=sin(90°)+sin(90°)=2, soit 0=2 (voir fonction trigonométrique)
  • pour la fonction logarithme, cela donnerait ln(a+b)=ln(a)+ln(b) donc ln(2)=ln(1)+ln(1)=0, ce qui est encore faux.

En fait la confusion vient de lapplication abusive des règles de calcul uniquement valables pour les fonctions linéaires, en dautres mots pour les situations de proportionnalité.

Voir aussi

Ce document provient de « Fonction num%C3%A9rique ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fonction numérique (mathématiques élémentaires) de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Fonction logarithme (mathématiques élémentaires) — Logarithme naturel Le logarithme naturel ou logarithme népérien, est, en mathématiques, le logarithme de base e. C est la réciproque de la fonction exponentielle de base e. C est la primitive de la fonction inverse définie sur et qui s annule en… …   Wikipédia en Français

  • Fonction (mathématiques élémentaires) — Pour les articles homonymes, voir Fonction. En mathématiques élémentaires, la plupart des fonctions rencontrées sont des fonctions numériques, mais la notion de fonction ne se limite pas à celle ci. L article qui suit présente quelques règles à… …   Wikipédia en Français

  • Fonction Numérique — Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction numerique — Fonction numérique Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction (Mathématiques Élémentaires) — Pour les articles homonymes, voir Fonction. Cet article fait partie de la série Mathématiques élémentaires …   Wikipédia en Français

  • Fonction (mathematiques elementaires) — Fonction (mathématiques élémentaires) Pour les articles homonymes, voir Fonction. Cet article fait partie de la série Mathématiques élémentaires …   Wikipédia en Français

  • Fonction numérique — Lorsque nous exprimons qu’une quantité dépend d’une autre quantité nous supposons qu’il existe un moyen d’obtenir cette quantité à partir d’une autre. Et si ces quantités sont représentées par des variables, alors une variable est fonction d’une… …   Wikipédia en Français

  • Calcul intégral (mathématiques élémentaires) — Calcul intégral Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Limite (mathématiques élémentaires) — Pour les articles homonymes, voir Limite. La notion de limite est très intuitive malgré sa formulation abstraite. Pour les mathématiques élémentaires, il convient de distinguer une limite en un point réel fini (pour une fonction numérique) et une …   Wikipédia en Français

  • Limite (mathematiques elementaires) — Limite (mathématiques élémentaires) Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/637683 Do a right-click on the link above
and select “Copy Link”