Dérivée partielle

Dérivée partielle

En mathématiques, la dérivée partielle d'une fonction est la dérivée par rapport à l'une de ses variables, les autres étant gardées constantes. Cette approche est utile dans l'analyse en dimension n, la géométrie différentielle, et l'analyse vectorielle.

La dérivée partielle par rapport à la variable x est notée \frac{ \partial f }{ \partial x } ou \partial_xf ou encore fx' (où \partial, symbole de la dérivation partielle, est appelé d rond, ou parfois d ronde — à ne pas confondre avec \ \delta, le delta minuscule de l'alphabet grec — plus de détails sur les notations).

Si f est une fonction de x1, ..., xn et dx1, ..., dxn sont les accroissements infinitésimaux de x1, ..., xn respectivement, alors l'accroissement infinitésimal correspondant de f est :

\mathrm{d}f=\frac{\partial f}{\partial x_1}\,\mathrm{d}x_1+\cdots+\frac{\partial f}{\partial x_n}\,\mathrm{d}x_n.

Cette expression est la « différentielle totale » de f, chaque terme dans la somme étant une « dérivée partielle » de f.

Dans le cas où la fonction ne dépend que d'une seule variable, la dérivée et la dérivée partielle sont identiques : f'(x)=\frac{\mathrm{d}f}{\mathrm{d}x}=\frac{\partial f}{\partial x}.

Sommaire

Exemple

Considérons le volume d'un cône V ; il dépend de la hauteur h et du rayon de la base r suivant la formule

V = \frac{ r^2 h \pi }{3}

La dérivée partielle de V par rapport à r est

\frac{ \partial V}{\partial r} = \frac{ 2r h \pi }{3}

Elle décrit la façon dont le volume d'un cône varie si son rayon est changé en maintenant sa hauteur constante.

La dérivée partielle par rapport à h est

\frac{ \partial V}{\partial h} = \frac{ r^2 \pi }{3}

et représente la façon dont varie le volume si c'est la hauteur du cône qui est changée tout en maintenant le rayon constant.

On peut alors exprimer la façon dont varie le volume si à la fois le rayon et la hauteur du cône sont changés.

\mathrm{d}V = \frac{ \partial V}{\partial r} \mathrm{d}r+\frac{ \partial V}{\partial h}\mathrm{d}h=\frac{ 2r h \pi }{3} \mathrm{d}r+\frac{ r^2 \pi }{3} \mathrm{d}h = \left(\frac{ \partial V}{\partial r} \vec e_r+\frac{ \partial V}{\partial h}\vec e_z\right)\cdot\left(\mathrm{d}r\vec e_r+ \mathrm{d}h\vec e_z\right)
= \left(\frac{ 2r h \pi }{3} \vec e_r+\frac{ r^2 \pi }{3}\vec e_z\right)\cdot\left(\mathrm{d}r\vec e_r+ \mathrm{d}h\vec e_z\right)= \overrightarrow {\operatorname{grad}}\, V\cdot \overrightarrow {\mathrm{d} OM}

Les équations faisant intervenir des dérivées partielles, appelées équations aux dérivées partielles, se rencontrent partout en sciences.

Notation

Soit f une fonction de x, y et z.

Les dérivées partielles premières sont :

\frac{ \partial f}{ \partial x} = f_x' = \partial_x f

et celles du second ordre :

\frac{ \partial^2 f}{ \partial x^2} = f_{xx}' = \partial_{xx} f = \partial^2_x f

Celles du second ordre impliquant deux variables s'écrivent :

\frac{ \partial^2 f}{\partial x\,\partial y} = f_{yx}' = \partial_{yx} f

et

\frac{ \partial^2 f}{\partial y\,\partial x} = f_{xy}' = \partial_{xy} f

Il est important de noter que, selon le théorème de Schwarz, nous pouvons écrire:

\frac{ \partial^2 f}{\partial x\,\partial y} = \frac{ \partial^2 f}{\partial y\,\partial x}

si f admet des dérivées partielles d'ordre 2 continues.

Nous notons les dérivées d'ordre supérieur ainsi :

\frac{ \partial^{i+j+k} f}{ \partial x^i\, \partial y^j\, \partial z^k } = f_{kz jy ix}' = \partial_{kz jy ix} f

Quand on a affaire à des fonctions de plusieurs variables, certaines peuvent être reliées les unes aux autres et il peut être nécessaire de spécifier celles qui sont maintenues constantes.

Dans des domaines comme la thermodynamique ou la mécanique statistique, la dérivée partielle de f par rapport à x, les variables y et z étant maintenues constantes, est souvent notée :

\left( \frac{\partial f}{\partial x} \right)_{y,z}

Définition formelle et propriétés

Les dérivées partielles sont définies à partir de limites. Leur définition est analogue à celle des dérivées « ordinaires », qu'elles généralisent.

Soient U un sous-ensemble ouvert de \R^n et f : U \to \R, x = (x_1,\dots,x_n) \mapsto f(x) = f(x_1,\dots,x_n) une fonction de n variables.

On définit la dérivée partielle (d'ordre 1, ou première) de f au point \mathbf{a} = (a_1,\dots,a_n) \in U par rapport à la i-ième variable xi comme

\frac{ \partial f}{\partial x_i }(\mathbf{a}) =
\lim_{h \to 0}{ 
f(a_1, \dots , a_{i-1}, a_i+h, a_{i+1}, \dots ,a_n) - 
f(a_1, \dots ,a_n) \over h }

Même si toutes les dérivées partielles \frac{ \partial f}{\partial x_1}(\mathbf{a}),\, \dots,\, \frac{ \partial f}{\partial x_n }(\mathbf{a}) existent en un point donné a, la fonction peut ne pas être continue en ce point. Par exemple, la fonction f définie sur {\mathbb R}^2 par :

f(x,y)=\left\{\begin{array}{ccc}\frac{xy}{x^2+y^2}&\text{si}& (x,y)\neq(0,0) \\ \\0&\text{si}&(x,y)=(0,0) \end{array}\right.

vérifie  \frac{\partial f}{\partial x} (0,0)= \frac{\partial f}{\partial y} (0,0)=0 mais n'a pas de limite en (0,0).

Toutefois, si toutes les dérivées partielles (d'ordre 1) existent et sont continues dans un voisinage de a, alors f est différentiable dans ce voisinage et la différentielle est continue. Dans ce cas, on dit que f est une fonction de classe C1 sur ce voisinage de a.

Lorsqu'elle est définie en tout point de U, la dérivée partielle \frac{\partial f}{\partial x_i} est une fonction définie sur U. Il se peut qu'elle admette elle-même des dérivées partielles d'ordre 1 : elles sont appelées dérivées partielles d'ordre 2, ou secondes, de f ; la dérivée partielle d'ordre 1 de \frac{\partial f}{\partial x_i} au point a par rapport à la j-ième variable est notée \frac{\partial^2f} {\partial x_j\, \partial x_i}(\mathbf{a}). On définit de manière analogue des dérivées partielles d'ordre supérieur.

Si toutes les dérivées partielles secondes de f existent et sont continues sur U, on dit que f est une fonction de classe C2 sur cet ouvert. L'ordre de dérivation peut alors être changé sans que cela modifie le résultat, d'après le théorème de Schwarz :

\frac{\partial^2f}{\partial x_i\, \partial x_j} = \frac{\partial^2f} {\partial x_j\, \partial x_i}

Le vecteur dont les composantes sont les dérivées partielles premières de f en un point donné a est appelé gradient de f au point a :

\overrightarrow{\operatorname{grad}}f(\mathbf{a}) = \left( \frac{\partial f}{\partial x_1}(a), \dots , \frac{\partial f}{\partial x_n}(a) \right) ; on le note aussi \overrightarrow{\nabla} f(\mathbf{a}) (lire "nabla").

Si f est une fonction de classe C1, alors le gradient de f au point a, quand il est non nul, a une interprétation géométrique : il indique la direction selon laquelle f varie le plus vite, la ligne de plus grande pente.

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Dérivée partielle de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Derivee partielle — Dérivée partielle En mathématiques, la dérivée partielle d une fonction est la dérivée par rapport à l une de ses variables, les autres étant gardées constantes. Cette approche est utile dans l analyse en dimension n, la géométrie différentielle …   Wikipédia en Français

  • Derivée partielle — Dérivée partielle En mathématiques, la dérivée partielle d une fonction est la dérivée par rapport à l une de ses variables, les autres étant gardées constantes. Cette approche est utile dans l analyse en dimension n, la géométrie différentielle …   Wikipédia en Français

  • Dérivée Partielle — En mathématiques, la dérivée partielle d une fonction est la dérivée par rapport à l une de ses variables, les autres étant gardées constantes. Cette approche est utile dans l analyse en dimension n, la géométrie différentielle, et l analyse… …   Wikipédia en Français

  • Dérivée partielle d'une fonction de plusieurs variables — ● Dérivée partielle d une fonction de plusieurs variables chacune des dérivées des fonctions à une variable obtenues en considérant les autres variables de la fonction comme constantes. (La dérivée de f(x, y, z) par rapport à x se note , ou . Les …   Encyclopédie Universelle

  • Derivee — Dérivée  Ne doit pas être confondu avec différentielle. En analyse, le nombre dérivé d une fonction en un point est, si celui ci existe, le coefficient directeur de la tangente au graphe de cette fonction en ce point. C est à dire le… …   Wikipédia en Français

  • Dérivée (mathématiques élémentaires) — Dérivée  Ne doit pas être confondu avec différentielle. En analyse, le nombre dérivé d une fonction en un point est, si celui ci existe, le coefficient directeur de la tangente au graphe de cette fonction en ce point. C est à dire le… …   Wikipédia en Français

  • Dérivée première — Dérivée  Ne doit pas être confondu avec différentielle. En analyse, le nombre dérivé d une fonction en un point est, si celui ci existe, le coefficient directeur de la tangente au graphe de cette fonction en ce point. C est à dire le… …   Wikipédia en Français

  • Derivee covariante — Dérivée covariante En géométrie différentielle, la dérivée covariante est un outil destiné à obtenir la dérivée d un champ vectoriel sur une variété. Il n existe pas de différence entre la dérivée covariante et la connexion, à part la manière… …   Wikipédia en Français

  • Dérivée Covariante — En géométrie différentielle, la dérivée covariante est un outil destiné à obtenir la dérivée d un champ vectoriel sur une variété. Il n existe pas de différence entre la dérivée covariante et la connexion, à part la manière dont elles sont… …   Wikipédia en Français

  • Derivee directionnelle — Dérivée directionnelle En analyse, la dérivée directionnelle est un outil d analyse à une variable applicable aux fonctions à plusieurs variables. Il permet de décrire les variations infinitésimales d une fonction dans une direction particulière …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”