- Cycle de l'azote
-
Le cycle de l'azote est un cycle biogéochimique qui décrit la succession des modifications subies par les différentes formes de l'azote (diazote, nitrate, nitrite, ammoniac, azote organique).
Sommaire
Généralités
L'atmosphère est la principale source d'azote , sous forme de diazote, puisqu'elle en contient 79 % en volume. L'azote, composé essentiel à de nombreux processus biologiques, se retrouve entre autres dans les acides aminés constituant les protéines, et dans les bases azotées présentes dans l'ADN. Des processus sont nécessaires pour transformer l'azote atmosphérique en une forme assimilable par les organismes.
L'azote atmosphérique est fixé par des bactéries présentes dans le sol, telles que Azobacter vinelandii, grâce à une enzyme, la nitrogénase. Celles-ci produisent de l'ammoniaque (NH4OH) à partir de l'azote atmosphérique et de l'hydrogène de l'eau. Certaines de ces bactéries, comme Rhizobium, vivent en symbiose avec des plantes, produisant de l'ammoniaque nécessaire aux plantes, en contrepartie des glucides de la plante dans la rhizosphère. L'ammoniaque peut aussi provenir de la décomposition d'organismes morts par des bactéries saprophytes sous forme d'ions ammonium (NH4+).
Dans les sols bien oxygénés, mais aussi en milieu aquatique oxygéné, des bactéries transforment l'ammoniac en nitrite (NO2-), puis en nitrates (NO3-), au cours du processus de nitrification. On peut décomposer cette transformation en nitritation et nitratation.
Les végétaux absorbent grâce à leurs racines les ions nitrate (NO3-) et, dans une moindre mesure, l'ammonium présent dans le sol, et les incorporent dans les acides aminés et les protéines. Les végétaux constituent ainsi la source primaire d'azote assimilable par les animaux.
En milieu Anoxique, (sol ou milieu aquatique non oxygéné) des bactéries dites dénitrifiantes transforment les nitrates en gaz diazote, c'est la dénitrification.
En mer
Sous forme de nitrate ou d'ammoniaque, l'azote est très soluble et dans l'eau et mobile dans les écosystèmes. Le ruissellement, l'érosion et les pluies tendent à ramener les nitrates non captés par la biomasse terrestre vers les lacs et surtout vers les nappes phréatiques et les océans. Dans la mer, comme sur terre, l'azote dissous dans l'eau est capté (via la photosynthèse) par les plantes et certaines bactéries, puis concentré dans le réseau trophique sous forme de protéines animales notamment.
Tout poisson et tout animal marin concentre dans sa biomasse (matière organique) une partie de l'azote accumulé par les végétaux ou animaux qu’il a consommés, lesquels l’ont prélevé dans le stock océanique, alimenté par l’atmosphère, et de plus en plus excessivement par les apports terrigènes (engrais, et eaux usées essentiellement).
Or, depuis le développement de la pêche industrielle et intensive, cette quantité n’est plus négligeable. En effet, chaque poisson pêché en mer correspond donc à un retrait d’azote du compartiment océanique. Cette quantité a été évaluée pour 58 écosystèmes marins répartis sur le globe par une étude[1] récente sur le cycle de l'azote dans les régions côtières. En 1960 la pêche en mer ramenait vers la terre 60 % des composés azotés estimés être apportés par les fertilisants lessivés par les pluies. Or, de 1960 à 2004, ces apports azotés ont été multipliées par 7,5, alors qu’en raison d’une raréfaction des espèces commercialisables suite à la surexploitation des océans, les prises de pêche n’ont augmenté que de 2,5. Seulement environ 20 % de l’azote perdu en mer par l’agriculture sont donc en 2008 « récupérés » par les activités de pêche, laquelle devrait être pour ces raisons mieux prise en compte dans les calculs des bilans d’azote et risques d’eutrophisation.
Une interprétation facile et rapide de ces résultats serait de croire qu’en augmentant encore la pêche on diminuerait l’eutrophisation marine. Cette piste serait illusoire, rappelle Greenpeace l'auteur de l'étude elle-même, notamment parce que poursuivre la surpêche conduira rapidement à la disparition pure et simple de la plupart des espèces commerciales, et donc à une eutrophisation pire encore. La solution préconisée par les ONG environnementales et de nombreux organismes scientifiques, et notamment par un rapport récent[2] du Conseil de la recherche portant sur la « qualité de l'eau du fleuve Mississippi au regard de la Loi sur l'eau : progrès, défis et opportunités ». Ce rapport recommande que l'EPA et l'USDA coopérèrent mieux pour réduire les impacts de l'agriculture sur la qualité de l'eau du Mississippi et du nord du golfe du Mexique (zone morte de 22 000 km2 environ en 2007-2008 ; la plus vaste du monde). L'excès d'azote cause la prolifération de phytoplancton qui se décompose en consommant l'oxygène dissous dans l'eau aux dépens des organismes vivants qui disparaissent alors[3]. La seule solution durable serait de limiter en amont les pertes d’engrais azotés d'origine agricole et de reconstituer un stock de poisson suffisant pour alimenter une pêche durable. Les indicateurs disponibles laissent penser que ces deux options peinent à se mettre en place.
Dans un aquarium
Article connexe : aquariophilie.Dans un aquarium, ce sont les déjections des poissons et la nourriture non consommée qui sont à l'origine de la formation d'ammoniac. Ce produit extrêmement toxique pour les animaux aquatiques est transformé en nitrates beaucoup moins toxiques et bénéfiques pour les plantes par des bactéries présentes naturellement ou artificiellement (plantées) dans l'aquarium.
Les bactéries nitrosomonas transforment l'ammoniac en nitrites, eux-mêmes très toxiques pour les animaux aquatiques. Et les bactéries nitrobacter transforment les nitrites en nitrates. Nitrates qui sont alors absorbés par les plantes présentes dans l'aquarium.
Lors du premier remplissage de l'aquarium, ces bactéries sont absentes de l'eau. Les populations de bactéries apparaissent progressivement à partir du moment où l'aquarium est rempli. Le lancement du cycle nécessite, selon le contexte, entre trois et 8 semaines durant lesquelles l'eau de l'aquarium reste toxique. L'accumulation d'ammoniac provoque la prolifération de la première population de bactéries. Ces bactéries transforment l'ammoniac en nitrites. Au bout de quelques jours l'accumulation de nitrites due à la première population de bactéries provoque la prolifération de la deuxième population de bactéries, qui fait retomber la concentration de nitrites. La concentration de nitrites redescend jusqu'à être totalement indétectable. À partir de ce moment, l'aquarium est sain pour les poissons.
La plupart des aquariums ont un excédent de poissons, et pas assez de plantes par rapport à la quantité de nitrates produites. Les nitrates finissent par s'accumuler dans l'eau, et il est alors nécessaire de les diluer régulièrement au bout de une à deux semaines en remplaçant une part de l'eau de l'aquarium par de l'eau « neuve ». La fréquence des remplacements dépendra de la sensibilité des animaux. De nombreux poissons supportent des concentrations jusqu'à 50 mg/l. Par contre, les coraux « durs » ne supportent pas des concentrations supérieures à 2 mg/l.
Les bactéries dégradant l'ammoniac et les nitrites sont présentes dans l'eau, le sol de l'aquarium et le filtre. Le brassage provoqué par le filtre et la pompe amène l'eau riche en oxygène de la surface vers le fond, et assure la survie des bactéries - qui ont besoin d'oxygène pour vivre. Il sert également à mettre en contact les bactéries présentes dans le filtre avec l'eau de l'aquarium.
À partir du moment où le cycle de l'azote est en route, on dit que l'aquarium est cyclé : l'ammoniac et les nitrites qui se forment dans l'eau sont immédiatement transformés, et les concentrations restent à des niveaux indétectables.
Ammonification
C'est la production d'ammonium ou d'ammoniac du fait d'une activité biologique, à partir soit de matière organique en décomposition, soit par la réduction de nitrate.
À partir de la matière organique
L'ammonification à partir de la matière organique a pour but de produire une source d'azote directement utilisable par les organismes pour leur propre synthèse.
Réalisée uniquement par une biomasse microbienne :
- Bactéries gram- (Entérobactérie, Pseudomonacea, etc.)
- Bactéries gram+ (Bacillus, etc.)
- Bactéries gram+ (Entérocoques, etc.)
- Champignons
À partir des nitrates
Elle a pour buts :
- de produire de l'énergie par réduction des nitrates en ammonium.
- de produire une forme d'azote assimilable. C'est la dénitrification assimilatrice ou l'ammonification assimilatrice.
Application en traitement des eaux usées
Article détaillé : traitement des eaux usées.Les stations d'épuration ont notamment comme fonction de dégrader les formes d'azote moléculaire et ammoniacal en nitrates, puis éventuellement de provoquer une dénitrification (ou dénitratation) afin de réduire la concentration de cet élément dans les eaux rejetées.
Nomenclature
HNO3 : acide nitrique ; HNO2 : acide nitreux ; NO-3 : ion nitrate ; NO2- : ion nitrite ; NH4+ : ion ammonium ; NH3 : ammoniac ; NH4OH : ammoniaque ; N2 : diazote. [4]
Notes et références
- Université de Montréal, publiée dans l’édition de février 2008 de Nature Geoscience) Étude conduite par la Pr. Roxane Maranger, du Département de sciences biologiques de l'
- Mississippi River Water Quality and the Clean Water Act: Progress, Challenges, and Opportunities
- Henry Steinberg, greenpeace
- Toute la chimie 2ème période (2004) BALOU D., FABRITIUS E., GILLES A., Ellipses, Paris
Voir aussi
Articles connexes
Liens externes
- Cycle de l'azote Schéma du cycle de l'azote en aquarium
- Portail de la biochimie
- Portail de l’agriculture et l’agronomie
- Portail de l’aquariophilie
Catégories :- Cycle biogéochimique
- Métabolisme de l'azote
Wikimedia Foundation. 2010.