Ligne du temps de la mécanique classique

Ligne du temps de la mécanique classique

Ligne du temps de la mécanique classique:

Antiquité

  • 4e siècle avant JC - Aristote émet le système de la physique d'Aristote
  • 260 BC - Archimède propose mathématiquement le principe du levier et découvre le principe flottaison
  • 60 AD - Héron d'Alexandrie écrit Metrica, Mechanics, et Pneumatics
  • 1000-1030 - Abū Rayhān al-Bīrūnī introduit la méthode scientifique expérimentale en statique et dynamique, and unifies them into the science of mécanique; he also combines the fields of hydrostatique with dynamics to create the field of hydrodynamique, which he helped mathematize;[1] and realizes that acceleration is connected with non-uniform motion[2]
  • 1000-1030 - Alhazen[3],[4] and Avicenne[5],[6] develop the concepts of inertia and momentum
  • 1100-1138 - Avempace develops the concept of a reaction force[7]
  • 1100-1165 - Hibat Allah Abu'l-Barakat al-Baghdaadi discovers that force is proportional to acceleration rather than speed, a fundamental law in classical mechanics[8]
  • 1121 - Al-Khazini publishes The Book of the Balance of Wisdom, in which he develops the concepts of gravitational potential energy and gravity at-a-distance[9]
  • 1340-1358 - Jean Buridan develops the theory of impetus
  • 1490 - Leonardo da Vinci describes capillarité
  • 1500-1528 - Al-Birjandi develops the theory of "circular inertie" to explain Earth's rotation[10]
  • 1581 - Galileo Galilei notices the timekeeping property of the pendule
  • 1589 - Galileo Galilei uses balls rolling on inclined planes to show that different weights fall with the same acceleration
  • 1638 - Galileo Galilei publishes Dialogues Concerning Two New Sciences
  • 1658 - Christian Huygens experimentally discovers that balls placed anywhere inside an inverted cycloide reach the lowest point of the cycloid in the same time and thereby experimentally shows that the cycloid is the isochrone
  • 1668 - John Wallis suggests the law of conservation du moment
  • 1676-1689 - Gottfried Leibniz develops the concept of vis viva, a limited theory of conservation de l'énergie

Mécanique Newtonienne

  • 1687 - Isaac Newton publie ses Philosophiae Naturalis Principia Mathematica, in which he formulates Newton's laws of motion and Newton's law of universal gravitation
  • 1690 - James Bernoulli shows that the cycloide is the solution to the isochrone problem
  • 1691 - Johann Bernoulli shows that a chain freely suspended from two points will form a catenaire
  • 1691 - James Bernoulli shows that the catenary curve has the lowest centre de gravité that any chain hung from two fixed points can have
  • 1696 - Johann Bernoulli shows that the cycloid is the solution to the brachistochrone problem
  • 1714 - Brook Taylor derives the fundamental frequency of a stretched vibrating string in terms of its tension and mass per unit length by solving an ordinary équation différentielle
  • 1733 - Daniel Bernoulli derives the fundamental frequency and harmoniques of a hanging chain by solving an ordinary differential equation
  • 1734 - Daniel Bernoulli solves the ordinary differental equation for the vibrations of an elastic bar clamped at one end
  • 1738 - Daniel Bernoulli examines fluide flow in Hydrodynamica
  • 1739 - Leonhard Euler solves the ordinary differential equation for a forced harmonic oscillator and notices the resonance phenomenon
  • 1742 - Colin Maclaurin discovers his uniformly rotating self-gravitating spheroids
  • 1747 - Pierre Louis Maupertuis applies minimum principles to mechanics
  • 1759 - Leonhard Euler solves the partial differential equation for the vibration of a rectangular drum
  • 1764 - Leonhard Euler examines the partial differential equation for the vibration of a circular drum and finds one of the fonction de Bessel solutions
  • 1776 - John Smeaton publishes a paper on experiments relating puissance, travail, moment and énergie cinétique, and supporting the conservation of energy.
  • 1788 - Joseph Louis Lagrange presents Lagrange's equations of motion in Mécanique Analytique
  • 1789 - Antoine Lavoisier states the law of conservation de la masse
  • 1813 - Peter Ewart supports the idea of the conservation of energy in his paper On the measure of moving force.
  • 1821 - William Hamilton begins his analysis of Hamilton's characteristic function
  • 1834 - Carl Jacobi discovers his uniformly rotating self-gravitating ellipsoides
  • 1834 - John Russell observes a nondecaying solitary water wave (soliton) in the Union Canal near Edinburgh and uses a water tank to study the dependence of solitary water wave velocities on wave amplitude and water depth
  • 1835 - William Hamilton states Hamilton's canonical equations of motion
  • 1835 - Gaspard Coriolis examines theoretically the mechanical efficiency of waterwheels, and deduces the effet Coriolis.
  • 1841 - Julius Robert von Mayer, scientifique amateur, writes a paper on the conservation of energy but his lack of academic training leads to its rejection.
  • 1842 - Christian Doppler propose l'effet Doppler
  • 1847 - Hermann von Helmholtz formally states la loi de la conservation de l'énergie
  • 1851 - Léon Foucault shows the Earth's rotation with a huge pendule (pendule de Foucault)
  • 1902 - James Jeans finds the length scale required for gravitational perturbations to grow in a static nearly homogeneous medium

Réferences

  1. Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science, Vol. 2, p. 614-642 [642], Routledge, London and New York:

    « "Numerous fine experimental methods were developed for determining the specific weight, which were based, in particular, on the theory of balances and weighing. The classical works of al-Biruni and al-Khazini can by right be considered as the beginning of the application of experimental methods in medieval science." »

  2. (en) John J. O’Connor et Edmund F. Robertson, « Al-Biruni », dans MacTutor History of Mathematics archive, université de St Andrews [lire en ligne] .:

    « "One of the most important of al-Biruni's many texts is Shadows which he is thought to have written around 1021. [...] Shadows is an extremely important source for our knowledge of the history of mathematics, astronomy, and physics. It also contains important ideas such as the idea that acceleration is connected with non-uniform motion, using three rectangular coordinates to define a point in 3-space, and ideas that some see as anticipating the introduction of polar coordinates." »

  3. Abdus Salam (1984), "Islam and Science". In C. H. Lai (1987), Ideals and Realities: Selected Essays of Abdus Salam, 2nd ed., World Scientific, Singapore, p. 179-213.
  4. Seyyed Hossein Nasr, "The achievements of Ibn Sina in the field of science and his contributions to its philosophy", Islam & Science, December 2003.
  5. Fernando Espinoza (2005). "An analysis of the historical development of ideas about motion and its implications for teaching", Physics Education 40 (2), p. 141.
  6. Seyyed Hossein Nasr, "Islamic Conception Of Intellectual Life", in Philip P. Wiener (ed.), Dictionary of the History of Ideas, Vol. 2, p. 65, Charles Scribner's Sons, New York, 1973-1974.
  7. Shlomo Pines (1964), "La dynamique d’Ibn Bajja", in Mélanges Alexandre Koyré, I, 442-468 [462, 468], Paris.
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [543]: "Pines has also seen Avempace's idea of fatigue as a precursor to the Leibnizian idea of force which, according to him, underlies Newton's third law of motion and the concept of the "reaction" of forces.")
  8. Pines, Shlomo (1970). "Abu'l-Barakāt al-Baghdādī , Hibat Allah". Dictionary of Scientific Biography. 1. New York: Charles Scribner's Sons. pp. 26–28 .. ISBN 0684101149 :
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [528]: Hibat Allah Abu'l-Barakat al-Bagdadi (c.1080- after 1164/65) extrapolated the theory for the case of falling bodies in an original way in his Kitab al-Mu'tabar (The Book of that Which is Established through Personal Reflection). [...] This idea is, according to Pines, "the oldest negation of Aristotle's fundamental dynamic law [namely, that a constant force produces a uniform motion]," and is thus an "anticipation in a vague fashion of the fundamental law of classical mechanics [namely, that a force applied continuously produces acceleration].")
  9. Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", in Roshdi Rashed, ed., Encyclopedia of the History of Arabic Science, Vol. 2, p. 614-642 [621], Routledge, London and New York
  10. F. Jamil Ragep (2001), "Tusi and Copernicus: The Earth's Motion in Context", Science in Context 14 (1-2), p. 145–163. Cambridge University Press.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Ligne du temps de la mécanique classique de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • TEMPS — Chacun sait à quel aspect de son expérience répond le mot de temps; mais aucune définition de la notion correspondante n’a reçu jusqu’ici, chez les savants comme chez les philosophes, une approbation unanime. Sensible à cette difficulté qu’il… …   Encyclopédie Universelle

  • Temps de la physique — Temps (physique) Pour les articles homonymes, voir Temps (homonymie). Le temps (du latin tempus) est une notion fondamentale de la Nature dans son sens de temps qui passe. « Les physiciens, écrit Étienne Klein, n essaient pas de résoudre… …   Wikipédia en Français

  • Temps en physique — Temps (physique) Pour les articles homonymes, voir Temps (homonymie). Le temps (du latin tempus) est une notion fondamentale de la Nature dans son sens de temps qui passe. « Les physiciens, écrit Étienne Klein, n essaient pas de résoudre… …   Wikipédia en Français

  • Mecanique quantique — Mécanique quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique …   Wikipédia en Français

  • Mécanique Quantique — Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique …   Wikipédia en Français

  • Temps perdu — Temps Pour les articles homonymes, voir Temps (homonymie). Chronos, dieu du temps de la mythologie grecque, par Ignaz Guenther …   Wikipédia en Français

  • Temps personnel — Temps Pour les articles homonymes, voir Temps (homonymie). Chronos, dieu du temps de la mythologie grecque, par Ignaz Guenther …   Wikipédia en Français

  • MÉCANIQUE (HISTOIRE DE LA) — «Au commencement était la mécanique.» Ce mot du physicien allemand Max von Laue dans son Histoire de la physique (1953, trad. de Geschichte der Physik , 1946) est profondément vrai. L’homo faber a multiplié depuis des temps immémoriaux les moyens …   Encyclopédie Universelle

  • Mécanique matricielle — La mécanique matricielle est une formulation de la mécanique quantique construite par Werner Heisenberg, Max Born, et Pascual Jordan en 1925. La mécanique matricielle est la première définition complète et correcte de la mécanique quantique. Elle …   Wikipédia en Français

  • Mécanique relativiste — Principe de relativité Pour les articles homonymes, voir relativité …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”