Cofibration
- Cofibration
-
En mathématiques, une cofibration est une application qui satisfait la propriété d'extension des homotopies, ce qui est le cas pour les inclusions de CW-complexes. Le quotient de l'espace but par l'espace source est alors appelé cofibre de l'application.
L'inclusion dans le cylindre d'application permet de remplacer une application continue entre deux espaces topologiques par une cofibration homotopiquement équivalente. La cofibre est alors appelée cofibre homotopique de l'application initiale.
Définition
Une application i entre deux espaces topologiques A et X est appelée une cofibration si pour toute application F de X dans un espace topologique Y telle que la composée avec i est homotope à une application g, il existe une homotopie de X vers Y dont la composée avec i donne l'homotopie sur A. Cette définition est résumée par le diagramme commutatif suivant :
![\begin{array}{ccc} A & \stackrel{H}{\to} & Y^{[0 ; 1]} \\ ^i\downarrow & ^\exists\!\nearrow & \downarrow^{\mathrm{ev}_0} \\ X & \stackrel{F}{\to} & Y\end{array}](c/5acf7b364db054cf684beba6aa3caa31.png)
Propriétés
Pour une cofibration i de A dans X, l'homologie de la cofibre C est celle de la paire d'espaces et s'inscrit donc dans une suite exacte longue :
![\cdots \to H_n(A) \stackrel{i_*}{\longrightarrow} H_n(X) \to H_n(C) \to H_{n-1}(A) \to \cdots \to H_1(C) \to H_0(A) \to H_0(X) \to H_0(C)\to 0.](7/a7755b9bbbb6136c8d9368e323037c69.png)
Voir aussi
Wikimedia Foundation.
2010.
Contenu soumis à la licence CC-BY-SA. Source : Article Cofibration de Wikipédia en français (auteurs)
Regardez d'autres dictionnaires:
Cofibration — In mathematics, in particular homotopy theory, a continuous mapping , where A and X are topological spaces, is a cofibration if it satisfies the homotopy extension property with respect to all spaces Y. The name is because the dual condition, the … Wikipedia
cofibration — noun A particular form of mapping See Also: fibration … Wiktionary
Model category — In mathematics, particularly in homotopy theory, a model category is a category with distinguished classes of morphisms ( arrows ) called weak equivalences , fibrations and cofibrations . These abstract from a conventional homotopy category, of… … Wikipedia
Mapping cylinder — In mathematics, specifically algebraic topology, the mapping cylinder of a function f between topological spaces X and Y is the quotient where the union is disjoint, and ∼ is the equivalence relation That is, the mapping cylinder Mf … Wikipedia
Fibration — In mathematics, especially algebraic topology, a fibration is a continuous mapping:p:E o B,satisfying the homotopy lifting property with respect to any space. Fiber bundles (over paracompact bases) constitute important examples. In homotopy… … Wikipedia
Weak equivalence — In mathematics, a weak equivalence is a notion from homotopy theory which in some sense identifies objects that have the same basic shape . This notion is formalized in the axiomatic definition of a closed model category.Formal definitionA closed … Wikipedia
Homotopy extension property — In mathematics, in the area of algebraic topology, the homotopy extension property indicates when a homotopy can be extended to another one, so that the original homotopy is simply the restriction of the extended homotopy.DefinitionGiven A subset … Wikipedia
Waldhausen category — In mathematics a Waldhausen category is a category C equipped with cofibrations co( C ) and weak equivalences we( C ), both containing all isomorphisms, both compatible with pushout, and co( C ) containing the unique morphisms :scriptstyle 0,… … Wikipedia
A¹ homotopy theory — In algebraic geometry and algebraic topology, a branch of mathematics, A1 homotopy theory is a way to apply the techniques of algebraic topology, specifically homotopy, to algebraic varieties and, more generally, to schemes. The theory is due to… … Wikipedia
Limit (category theory) — In category theory, a branch of mathematics, the abstract notion of a limit captures the essential properties of universal constructions such as products and inverse limits. The dual notion of a colimit generalizes constructions such as disjoint… … Wikipedia