- Candida albicans
-
Candida albicans Candida albicans sur lame de milieu RAT Classification Règne Fungi Division Ascomycota Classe Saccharomycetes Ordre Saccharomycetales Famille Saccharomycetaceae Genre Candida Nom binominal Candida albicans
Berkhout, 1923Candida albicans est l'espèce de levure la plus importante et la plus connue du genre Candida. Elle provoque des infections fongiques (candidiase ou candidose) essentiellement au niveau des muqueuses digestive et gynécologique. Les candidoses sont une cause importante de mortalité chez les patients immunodéprimés comme les patients atteints du sida, les patients cancéreux sous chimiothérapie ou après transplantation de moelle osseuse. Les candidoses orale et œsophagienne sont fréquentes chez le patient atteint du sida. Lorsque Candida s'infiltre dans le flux sanguin, l'infection devient systémique et on parle alors de candidémie. Les candidémies sont caractérisées par une mortalité de l'ordre de 40 %. C. albicans peut donner également une multitude d'autre infections car il s'agit d'un pathogène opportuniste très polyvalent : il peut être responsable d'infection superficielle cutanée, causer un érythème fessier chez les nouveau-nés, une bronchopneumonie et/ou une pneumonie, une vaginite, une balanite ou être responsable d'infections profondes.
C. albicans est un organisme vivant à l'état naturel sur la peau, dans la bouche et le tube digestif de l'être humain. On le retrouve chez 80 % de la population, et il n'entraine habituellement aucune maladie ou symptôme en particulier. C'est un organisme commensal saprophyte.
Au laboratoire médical, la culture en boîte de Petri des Candida donne des colonies qui sont grandes, rondes, de couleur blanche ou crème (albicans signifie « blanchâtre »).
Sommaire
Cycle de vie
Le fait que C. albicans soit classé comme étant un champignon asexué peut paraître surprenant vue sa proximité phylogénétique avec des levures sexuées telles que Saccharomyces cerevisiae. De plus, des gènes impliqués dans le mating et la méiose chez S. cerevisiae ont des orthologues chez C. albicans. La reproduction de C. albicans est majoritairement clonale, avec des échanges génétiques limités entre individus. Pourtant, la découverte de gènes de mating laisse à penser que C. albicans a gardé la capacité de se reproduire et de se recombiner. Ces gènes de mating, appelés MTL (mating type-like), possèdent de grandes similitudes avec les gènes MAT rencontrés chez S. cerevisiae, avec la différence notable que C. albicans possède 4 gènes MTL et non 3 comme c'est le cas chez S. cerevisiae. La plupart des souches de C. albicans sont hétérozygotes pour ces loci et seules 3 à 7 % des souches rencontrées dans la nature sont homozygotes. À l'inverse de S. cerevisiae, pour lesquelles toutes les cellules sont compétentes, seules les souches de C. albicans ayant subi un switch phénotypique de blanc à opaque sont compétentes. Il y a 2 connexions majeures entre le système de mating et la conversion blanc-opaque: 1- c'est le locus MTL qui régule la faculté de C. albicans à effectuer le switch et 2- le mating des cellules en phase opaque est environ 10^6 fois plus efficace que celui des cellules en phase blanche. L'intérêt pour C. albicans de lier les 2 systèmes est peut-être de faire en sorte que les individus ne puissent se recombiner que dans des niches spécifiques. En effet, les cellules en phase opaque sont plus fragiles que les cellules en phase blanche et elles sont instables[1].
Le mating de deux cellules de C. albicans a pour résultat final une cellule tétraploïde, qui doit perdre certains de ses chromosomes pour rétablir la diploïdie.Chez la plupart des champignons, ce processus se fait grâce à une méiose qui complète ainsi un cycle sexuel. Toutefois, chez C. albicans, seul un cycle parasexuel a pu être identifié in vitro, un cycle impliquant une perte coordonnée des chromosomes surnuméraires au fil des divisions cellulaires[2]. Il reste toutefois possible que C. albicans puisse subir une méiose, puisque l'étude de son génome a permis d'identifier plusieurs orthologues de gènes impliqués dans ce processus chez d'autres levures: le locus MTL, NDT80, etc[3]. D'un autre côté, plusieurs gènes importants pour la méiose semblent manquer dans le génome de C. albicans, ce qui suggère que si la méiose peut avoir lieu dans cette levure, son déroulement doit être différent de celui des autres champignons.
Génome
C. albicans est un organisme diploïde qui possède 8 paires de chromosomes, le plus grand étant appelé R, les suivants étant numérotés de 1 à 7 selon une taille décroissante. Son génome correspond approximativement à 16 Mb (haploïde) et code environ 6 400 gènes. Le code génétique de C. albicans possède une particularité. Le codon CUG code une sérine et non pour une leucine.
Critère d'identification
Il existe plusieurs techniques qui permettent d'identifier C. albicans en laboratoire comme par exemple :
- le test de germination positif, en effet C. albicans formera un hyphe sans constriction lorsque placé dans du plasma de lapin à 37 degrés Celsius.
- Le test de chlamydospore sera positif sur milieu RAT dû à la présence de tweed 80.
- Test de l'uréase négatif sur milieu Christensen.
- Colonie blanche crème, luisant et crémeuse sur gélose sang ou sabouraud.
Facteurs de virulence
Un facteur de virulence permet à un pathogène de se maintenir et de proliférer dans son hôte. Ils peuvent d'ailleurs créer des lésions, c'est alors qu'apparaît la pathologie.
Dimorphisme
Le dimorphisme correspond à la transition de la forme levure ellipsoïdale, qui se sépare des cellules filles après la cytokinèse, à la forme hyphale, dont les cellules filles restent liées les unes aux autres par des septa et dont la croissance est apicale. Cette transition peut être induite par un grand nombre de stimuli : le pH, la température, la composition du milieu... Les voies de signalisation conduisant à la filamentation chez C. albicans sont soit MAP-kinase dépendante, soit pH-dépendante, soit AMPc-dépendante. Ces voies sont redondantes: le blocage de l'une d'elle ne suffit pas à inhiber la filamentation. D'autre part, les gènes régulés par ces voies (HWP1, ALS, SAP) sont connus pour leur rôle dans la virulence. Entre les formes levure et hyphale, on peut encore trouver d'autres formes morphologiques comme le pseudohyphe et la chlamydospore, qui sont toutefois plus rares[4].
Adhésines
C. albicans possède un grand nombre de récepteurs à sa surface qui lui permettent de reconnaître les cellules de son hôte et de s'y attacher solidement. Le β-1,2-phosphomannoside se lie ainsi à la galectine via une liaison lectinique. Les protéines de la famille ALS (agglutinin-like sequence) se lie à diverses protéines (laminine, collagène, fibrinogène) ainsi qu'à des cellules épithéliales et endothéliales via des liaisons non-covalentes [5]. Enfin, la protéine Hwp1p (hyphal wall protein) se lie à son substrat de manière covalente par l'action d'une transglutaminase.
Enzymes sécrétées
C. albicans possède toute une gamme d'enzymes hydrolytiques qui sont exprimées différentiellement selon l'environnement. On peut citer par exemple les enzymes de la famille SAP (secreted aspartyl proteinase), qui compte actuellement 10 membres et dont les rôles sont variés (dégradation de protéines, dégradation des structures cellulaires et tissulaires de l'hôte, dégradation du système immunitaire). Leur expression dépend du pH, de la localisation de C. albicans et de sa forme morphologique[6]. C. albicans possède encore des phospholipases (A, B, C et D) et des lipases (1 à 10).
Traitements utilisés contre C. albicans
Les antifongiques utilisés actuellement ont de nombreuses cibles: la paroi cellulaire, la membrane plasmique, la sythèse de l'ergostérol, l'ADN, l'ARN... Ces antifongiques sont soit fongistatiques, soit fongicides.
Polyènes
Les polyènes (ex.: Amphotéricine B [AmB], nystatine) sont des antifongiques naturels à action fongicide. L'AmB se lie à l'ergostérol de la membrane du champignon et crée des pores, augmentant ainsi la perméabilité de la membrane. Des composés essentiels à la vie du champignon diffusent ainsi hors du cytosol (ions K+, ...) ce qui conduit à la mort de l'organisme.
L'AmB connaît une réactivité croisée avec le cholestérol, le stérol principal chez l'homme. L'AmB peut donc être toxique à haute dose.Analogues de pyrimidine
Les analogues de pyrimidine (ex.: 5-fluorocytosine [5-FC]) sont des antifongiques à action fongicide. La 5-FC pénètre la cellule fongique et inhibe la synthèse d'ARN et d'ADN. Les analogues de pyrimidine n'affectent pas l'homme, car la cytosine déaminase n'existe pas dans les cellules ou y est faiblement active.
Azoles
Les azoles forment la classe la plus répandue d'antifongiques à action fongistatique. On les classe en 2 sous-familles: les imidazoles (kétoconazole, miconazole) et les triazoles, plus récents (fluconazole, voriconazole, itraconazole). Les azoles inhibent l'action du gène ERG11 impliqué dans la biosynthèse de l'ergostérol. La membrane est ainsi fragilisée et le champignon ne peut plus croître. Le gène ERG5 est une cible secondaire des azoles.
Allylamines
Les allylamines (ex.: terbinafine, naftinine) sont des antifongiques à action fongistatique qui inhibent la fonction de l'enzyme codée par ERG1, une squalène epoxidase. L'effet fongistatique est le résultat de la déplétion en ergostérol et de l'accumulation de stérols toxiques dans la cellule.
Morpholines
Les morpholines (ex.: amorolfine) ont une activité fongistatique en inhibant la fonction de 2 enzymes impliquées dans la biosynthèse de l'ergostérol: la C-14 stérol réductase (codée par ERG24) et la C-8 stérol isomérase (codée par ERG2).
Echinocandines
La paroi cellulaire a une fonction importante chez les champignons. C'est pourquoi de nouveaux antifongiques ont été développés, qui ciblent la synthèse des éléments de ladite paroi. Les échinocandines ciblent par exemple le produit du gène FKS1 de C. albicans, qui code une β-1,3-glucane synthase. Les échinocandines (ex.: caspofongine, micafongine, ...) ont une forte activité fongicides et ne présentent pas de réactivité croisée avec d'autres antifongiques[7],[8].
Autres types d'antifongiques
Parmi les autres types d'antifongiques, plus ou moins récents, on retrouve les sordarines, qui ciblent la synthèse de protéines (inhibiteurs du facteur d'élongation 2), l'auréobasidine A (inhibiteur de la synthèse de céramides), les inhibiteurs de pompes à protons ou des transporteurs ABC, ...
Phénomènes de résistance
Résistance aux analogues de pyrimidine
Certaines souches de C. albicans peuvent développer une résistance à la 5-FC en exprimant des formes mutées de cytosine perméase ou de cytosine déaminase. Mais la majorité des souches présentent des mutations dans le gène FUR1 qui code une phosphoribosyltransférase, empêchant ainsi à la 5-FC de s'intégrer dans l'ARNm lors de sa synthèse.
Résistance aux azoles
La résistance aux azoles est un phénomène courant chez C. albicans. Il intervient généralement lors de traitements prolongés avec le même médicament. La résistance peut intervenir de 4 manières[9] :
- Surexpression de la cible :
- La cible des azoles, la 14α-lanostérol déméthylase, peut être surexprimée dans la souche de manière à ce que les molécules d'azoles ne soient jamais assez nombreuses pour inhiber toutes les enzymes présentes. La synthèse de l'ergostérol peut ainsi se poursuivre normalement
- Altération de la cible :
- Le gène ERG11 peut être muté de manière à ce qu'il ne code plus qu'une forme modifiée de la 14α-lanostérol déméthylase, dont l'affinité pour les azoles est nettement diminuée. On a actuellement recensé plus de 18 mutations différentes, regroupées dans 3 hot spots différents, qui représentent soit le site d'entrée du substrat ou de l'azole, soit le site de liaison du subtrat/azole, soit l'hème.
- Efflux des azoles :
- Les azoles peuvent être expulsés hors de la cellule par la surexpression de transporteurs multidrogues. De cette manière, les azoles ne sont jamais assez concentrés dans la cellule pour réussir l'inhibition d'Erg11p. Deux familles de transporteurs sont impliquées dans ce phénomène: la famille des Major Facilitators (ex.: CaMDR1) et la famille des ATP-binding cassette transporteurs (transporteurs ABC) (ex.: CDR1 et CDR2). La surexpression de cette dernière famille de transporteurs peut intervenir lorsque le facteur de transcription TAC1 est muté.
- Absence d'intermédiaire toxique :
- Lorsque la 14α-lanostérol déméthylase est inhibée, il y a accumulation dans la cellule d'un intermédiaire méthylé, le 14α-méthylfécostérol. Ce composé est pris comme substrat par l'enzyme Δ5-6 désaturase codée par ERG3 pour former le 14α-méthyl-ergosta-8,24(28)-dien-3β,6α-diol, un composé toxique. Des souches ont été trouvées qui possèdent des allèles ERG3 déficients. Ces souches ne transforment donc pas les composés méthylés en composés toxiques, ce qui explique leur résistance aux azoles.
Cette absence d'Erg3p est couplée généralement à une résistance à l'AmB, puisque l'absence de la Δ5-6 désaturase coupe la voie de biosynthèse de l'ergostérol.
Résistance aux échinocandines
Les phénomènes de résistance aux échinocandines restent rares. On sait toutefois qu'une mutation dans le gène FKS1 suffit à rendre la souche résistante à l'action des échinocandines.
Notes et références
- Bennet, R.J. and A.D. Johnson.2005. Mating in Candida albicans and the search for a sexual cycle. Annu rev Microbiol 59:233-255
- Bennett, R.J. and A.D. Johnson. 2003. Completion of a parasexual cycle in Candida albicans by induced chromosome loss in tetraploid strains. Embo J 22: 2505-2515
- Tzung K.W. et al.2001. Genomic evidence for a complete sexual cycle in Candida albicans. Proc Natl Acad Sci USA 98: 3249-3253
- Sudbery P., N. Gow and J. Berman. 2004. Trends in microbiology
- Sheppard, D.C., et al.. 2004. Functional and structural diversity in the Als protein family of Candida albicans. J Biol Chem 279: 30480-30489
- Borg-von Zepelin,M., S. Beggah, K. Boggian, D. Sanglard and M. Monod. 1998. The expression of the secreted aspartyl proteinases Sap4 to Sap6 from Candida albicans in murine macrophages. Mol Microbiol 28: 543-554
- Denning, D.W. 2003. Echinocandin antifungal drugs. Lancet. 362:1142-1151
- Laverdière, M. et al.. 2006. Progressive loss of echinocandin activity following prolonged use for treatment of Candida albicans oesophagitis. J Antimicrob Chemother 57:705-708
- White, T.C., K.A. Marr, and R.A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev 11:382-402
Catégories :- Saccharomycetes
- Espèce eucaryote dont le génome est séquencé
Wikimedia Foundation. 2010.