Vidéoprojection

Vidéoprojection

Vidéoprojecteur

Vidéoprojecteur DLP InFocus IN34.

Un vidéoprojecteur est un appareil de projection conçu pour reproduire une source vidéo dite vidéogramme ou informatique, sur un écran séparé ou sur une surface murale blanche.

On associe parfois le terme vidéoprojection avec la notion « frontale » pour le distinguer de la rétroprojection. Ainsi, le rétroprojecteur est un dispositif d’affichage vidéo ou un téléviseur de grande taille qui exploite un vidéoprojecteur, une optique et un écran semi-opaque.

Sommaire

Caractéristiques

Le contraste

Exprimé sous la forme d’un quotient « valeur en lux : 1 », soit la valeur en lux d’un signal blanc à 100 % moins valeur en lux d’un signal blanc à 0 %, le tout divisé par la valeur en lux d’un signal blanc à 0 % (un signal blanc à 0 % correspond à du noir).

Le taux de contraste est une des caractéristiques essentielles à prendre en compte dans le choix d’un vidéoprojecteur. Plus le taux de contraste est élevé, plus la qualité de l’image est optimale. Dans le choix d’un projecteur Home cinema, bien plus que la luminosité, c’est le taux de contraste qui assure la qualité de l’image. Un taux de contraste élevé permettra d’obtenir plus de détails dans les nuances et a priori des noirs plus profonds. Cela donne du relief à l’image et accentue ainsi la sensation de trois dimensions.

En Home cinema, un bon de taux de contraste doit se situer entre 2 000:1 et 4 000:1 en vidéo (à 6 500 K).

La luminosité

Exprimée en lumen :

La puissance lumineuse s’exprime généralement en lumens ANSI, unité de mesure normée par l’American National Standards Institute. Elle va dépendre du type d’utilisation. Plus la taille de l’image souhaitée est grande et la luminosité ambiante importante, plus le projecteur doit être lumineux.

  • Utilisation Professionnelle

Tout dépend du type d’utilisation et en particulier du type de salle. Pour des présentations dans de petites salles de réunion, un projecteur avec 1 500 lumens suffira largement. En revanche, dans des grandes salles de conférences très éclairées, avec des écrans de grande taille, le projecteur doit être nettement plus lumineux pour projeter une image claire et lisible (au moins 2 500 lumens).

  • Utilisation Home cinema

Dans le cadre d’une utilisation Home cinema, la taille de l’écran est généralement comprise entre 1,5 et 3 mètres de base. Comme dans un vrai cinéma, la qualité d’image est la meilleure lorsque l’obscurité est la plus complète possible. Pour obtenir une image d’excellente qualité, le projecteur doit afficher une luminosité comprise entre 600 et 1 000 lumens.

La définition

Exprimée en pixels :

Que ce soit en LCD ou DLP, chaque matrice est constituée de pixels, éléments de base de l’image. La définition de l’image va dépendre du nombre de pixels : plus ils sont nombreux plus la précision de l’image est censée être élevée.

Il convient néanmoins de choisir la définition de son projecteur en fonction de son besoin d’utilisation. Et les besoins sont très différents selon qu’on projette essentiellement de l’image informatique (présentations type Powerpoint, tableurs, etc.) ou de la vidéo (Home cinema).

Image informatique (utilisation professionnelle)

Le critère majeur de choix est la définition qu’affiche l’ordinateur qu’on connecte au projecteur. Avec les PC portables notamment, il est plus confortable de disposer sur le projecteur de la même définition que sur l’écran interne.

Principales définitions Data (normes VESA) :

  • VGA : 640 × 480
  • SVGA : 800 × 600
  • XGA : 1 024 × 768
  • SXGA : 1 280 × 1 024
  • UXGA : 1 600 × 1 200
  • QXGA : 2 048 × 1 536

Image Vidéo (utilisation Home Cinéma)

Le besoin de définition est moindre, du moins en Europe, puisque nos bonnes vieilles images analogiques PAL, SECAM, ou NTSC, sont de qualité et définition moins élevées que les images Data, une fois converties en numérique pour l’affichage sur un projecteur LCD ou DLP, qui nous le rappelons, sont des produits numériques. En outre, un autre critère est important à prendre en compte : le 4/3 ou le 16/9.

Définitions des principaux standards vidéos analogiques convertis en numériques :

  • PAL/SECAM en 4/3 : 768 × 576
  • PAL/SECAM en 16/9 et 576i : 1 024 × 576
  • NTSC en 4/3 : 720 × 480
  • NTSC en 16/9 et 480p : 848 × 480

Donc, globalement, si on se contente de regarder essentiellement de l’image télé classique en 4/3, un projecteur 4/3 de définition SVGA (800 × 600) suffira amplement, une définition plus élevée n’amenant pas un gain de qualité d’image significatif.

Si on regarde beaucoup de 16/9, une définition XGA (1 024 × 768) sera plus conseillée, surtout en PAL, ou alors un projecteur de matrice spécifique 16/9, dont l’offre s’élargit de plus en plus dans diverses définitions (848 × 480, 960 × 540, 1 024 × 576).

Si on dispose d’une source TV HD, un projecteur équipée d’une matrice haute définition s’impose. Comme pour l’image data, les signaux TV HD sont des signaux graphiques de très haute définition et toujours de format 16/9, d’une qualité très supérieure au PAL, SECAM et NTSC, avec lesquels ils n’ont rien de commun.

Définitions des deux principaux standards TVHD (USA et Japon) :

  • 720p : 1 280 × 720
  • 1 080i : 1 920 × 1 080 (entrelacée)
  • 1 080p : 1 920 × 1 080

Le niveau sonore

Exprimé en décibels pondérés (dBA) :

Le niveau sonore est dû au bruit généré par le ventilateur chargé de refroidir la lampe de l’appareil. Sur la plupart des documentations des constructeurs, le niveau sonore est sous-estimé ou mesuré à l’opposé du ventilateur. Il est donc fortement conseillé d’essayer l’appareil dans les conditions voulues (et non dans un magasin).

Il faut retenir qu’une augmentation de 3 dBA double l’intensité sonore.

Pour un usage domestique (dans un salon par exemple), une valeur de 25 dBA est parfaite, avec 28 dBA comme maximum.

Technologies

Les vidéoprojecteurs LCD

Cette technique dérivée des écrans à cristaux liquides (qu’on retrouve dans les montres, les jeux, les écrans, etc.) date du début des années 1990 et n’a cessé d’évoluer. La lumière d’une lampe spéciale à vapeur de métal (ou lampe métal halide) traverse ou se reflète sur trois panneaux LCD correspondant chacun aux trois couleurs fondamentales : rouge, vert, bleu. Les trois images sont ensuite recomposées pour n’en faire plus qu’une, laquelle est alors projetée sur l’écran via un objectif.

On distingue trois technologies : Le « mono LCD », première technologie accessible pour le grand public (1994), dans laquelle un faisceau lumineux traverse un panneau à cristaux liquides équipé de filtres de couleurs ; sa résolution est divisé par 3 car il faut 3 pixels rouge-vert-bleu du panneau pour afficher 1 pixel à l’écran, cette technique bon marché est abandonnée depuis la fin des années 1990 en raison de ses faibles performances aux profits des « Tri LCD », où la lumière de la lampe est décomposée vers trois miroirs dichroïques rouge-vert-bleu puis renvoyée au travers de trois panneaux à cristaux liquides monochromes, alignés avec précision leurs images se recomposent dans un assemblage de prismes avant de traverser l’objectif.

Mono et Tri LCD sont des appareils dit « transmissif », la lumière doit traverser le panneau, par conséquent les circuits de commande sont logés entre les pixels ce qui génère une grille opaque visible à l’écran, résolution et luminosité sont donc limitées ; pour contourner le problème certains constructeurs incorporent au panneau des micro-lentilles qui concentrent la lumière sur chacun des pixels ; d’autres ont fait le choix de la technologie du « Tri LCD réflectif ».

Basé sur une architecture proche des classiques tri-lcd, les panneaux LCD réflectifs ou LCOS ont l’aspect de petits miroirs où les circuits de commande de chaque pixel ne se trouvent plus à côté mais derrière chacun d’eux, la grille bien que présente pour isoler chaque pixel reste invisible à l’écran. Résolution et luminosité peuvent être poussées à l’extrême et deviennent applicables pour les salles de cinéma. Leur noms technologiques diffèrent suivant les constructeurs : LCOS, nom générique (utilisé par EPSON), DILA (JVC), SXRD (SONY)[1].

Les avantages du tri LCD sont la définition, le prix, la luminosité, l’absence de réglages complexes (convergences calées en usine), l’absence de scintillement et de lignage[1].

Les inconvénients sont le contraste souvent faible (typiquement de 400:1 à 1 500:1), parfois compensé par un mécanisme qui réduit la lumière de la lampe automatiquement suivant les images et appelé IRIS, le rendu des teintes sombres, les pertes de lumière sur les appareils trop compacts, la rémanence (taux de rafraîchissement faible), la colorimétrie, la pixelisation[1]. Un quadrillage (l’espace interpixels crée un effet de grille noir) visible de près (sauf sur les LCD réflectifs). Les cristaux liquides ne parviennent pas à bloquer complètement la lumière de la lampe (toujours allumée) sur les parties sombres de l’image, d’où des noirs grisés. Mais ce sont aussi les vidéoprojecteurs les plus répandus.

Les LCOS ont l’avantage de corriger tous ces défauts : contraste de 3 000:1 a 30 000:1, résolution en 2K (HDTV), 4K (broadcast), 8K (expérimental), niveau du noir très bas, puissance lumineuse très élevée pour les machines professionnelles ; taux de rafraîchissement élevé, couleurs réalistes. Ils ont l’inconvénient d’un tarif élevé.

Les vidéoprojecteurs DLP/DMD

Article détaillé : Matrice de micro-miroirs.
Effet arc-en-ciel sur un projecteur DLP.

Ils reposent sur la technologie DLP (Digital Light Processing) développée par Texas Instruments, où chaque pixel correspond à un micro-miroir actionné par un champ électrique : la partie active peut être intégrée dans une puce DMD (Digital Micromirror Device). Chacun de ces miroirs renvoie ou non la lumière de la lampe vers l’écran. Le rapport cyclique de cet état donne la luminosité de chaque pixel variable de 0 à 100 %. En outre, un filtre tricolore RVB en rotation, situé entre la matrice DLP et la lampe, permet de projeter successivement les trois composantes de l’image finale.

Les avantages sont le contraste, l’absence de rémanence, la luminosité, l’absence de pixelisation, le rendu des teintes foncées, les réglages[1].

Les inconvénients sont la perte lumineuse et la fatigue oculaire dues au disque coloré, et la perception par certaines personnes de petits « flashes » d’arc-en-ciel pendant la projection. C’est le « rainbow effect ». La technologie Tri DLP qui consiste à utiliser trois puces (une pour chaque couleur primaire) permet de supprimer ces problèmes. Les autres inconvénients sont les prix plus élevés que les LCD, la qualité d’image perfectible en référence aux tritubes (sauf tri-DLP 1 080 × 1 920 pixels), le bruit et la chaleur du système de refroidissement, la durée de vie de la lampe[1].

La durée de vie de la lampe est directement fonction de la qualité technique de l’appareil. Toshiba par exemple annonce des durées de vie de 2 000 heures alors que dans la pratique les lampes ne fonctionnent pas plus de 200 heures. Cela résulte d’une mauvaise conception de l’appareil et non du choix de la technologie. Les appareils bien conçus mettent en veille la lampe lorsque la température critique est atteinte. Cela permet de prolonger la durée de vie de la lampe.

Les vidéoprojecteurs Tritubes (CRT)

Popularisés par la société Barco, ces appareils se composent de trois tubes cathodiques de petite taille (typiquement 5,5″, 6,5″, 7″, 8″ et 9″) à haute résolution et haut rendement, un tube pour chaque couleur primaire (rouge, vert, bleu). Chacun de ces tubes, au format 4/3, possède son propre objectif et l’image finale est obtenue par superposition des trois images primaires (synthèse additive) que l’on doit faire converger et déformer (correction de trapèze, de ballon) en raison de la position différente de chacun des tubes.

Ils ont pour avantages d’être dénués de structures visibles à l’écran (contrairement à la grille des écrans CRT ou des LCD) hormis la structure de l’image même (lignes visibles si elles sont en faible nombre). Les couleurs sont très fidèles si l’appareil est bien réglé et le taux de contraste mesuré sur le tube oscille entre 15 000:1 et 30 000:1 suivant les modèles (mesure qui chute en fonction de la clarté de la salle). Les plus petites tailles (7″ comme le SD130 ou SD187 et 07ms) d’où leur utilisation sur des machines de petites tailles comme les Barco série 7xx ou 6xx ainsi que sur les rétroprojecteurs de la série rd708 avec des images dune définition pour sur certaines machines à focus électromagnétique pouvant dépasser les 1280×1024 (nec 9pgxtra).

Les 8″ sont compatibles DATA et GRAPHICS. Tous les 8″ et 9″ sont compatibles avec les fréquences TV, HDTV et DATA/GRAPHICS (dans la limite de leurs circuits électroniques) et peuvent se voir adjoindre un multiplicateur de ligne (line doubleur video scaler en anglais voire quadrupleur) pour améliorer les sources vidéo de faible définition (Pal, Secam, NTSC). Plus les tubes sont de grande taille, plus ils sont lumineux et définis.

7″ (768 ×1 024), 8″ focus électrostatique (1 200 × 1 500, 1989-1996), 8″ focus électromagnétique (1 200 × 1 600 Barco, 1996-2002) (1 250 × 1 600 Barco, 2002-2007) (1 200 × 1 700 Sony, 1996-2002), 9″ focus électromagnétique (1 600 × 2 000 Sony, 1994-1998) (2 000 × 2 500 Barco-Sony-Electrohome, 1998-2007).

Les modèles les plus sophistiqués donnent des images d’un naturel comparable à la pellicule de cinéma.

Les inconvénients majeurs de cette technique, qui est la plus ancienne, sont dans son rapport poids/encombrement/luminosité très faible ainsi que dans la complexité des réglages de convergences électroniques et mécaniques pour superposer au mieux ces trois images, réglages qui se compliquent avec l’augmentation de la résolution, entraînant inévitablement un surcoût devenu tel que les constructeurs ont décidé d’abandonner cette technologie. On peut citer également une luminosité non uniforme (réglable sur les 9″ et certains 8″), le contraste qui ne peut s’apprécier que dans une salle noire à cause de la faible luminosité des machines (ce qui limite aussi la taille de l’écran à 2-3 mètres de base), le scintillement des lignes pour les sources en vidéo entrelacée ou les images en faible cadence (moins de 45 Hz), un recul important nécessaire avec les sources de qualités moyennes, le marquage du phosphore avec des images fixes intenses au bout de quelques dizaines d’heures[1].

Le prix du neuf en 2002 : le petit Barco 508, 7″ compatible TV, coûtait 7 000 euros ; le gros Barco 909, 9″ compatible TV-HDTV-DATA coûtait 100 000 euros

Les principaux constructeurs : Barco, Electrohome, Mitsubishi, Nec, Panasonic, Seleco (Sim2), Sony.

Les fournisseurs de tubes : Matsushita, Toshiba, Sony (VDC en rebuild), Thomson

Les vidéoprojecteurs Laser (DLP)

La technique la plus ancienne est celle du balayage à deux axes X-Y d’un faisceau laser sur un ou deux miroirs montés sur galvanomètre, similaire à la méthode de balayage d’un tube cathodique, elle présente l’inconvénient d’offrir une faible définition (moins de 100 lignes) due à la lenteur des galvanomètres d’où une utilisation limitée aux spectacles et dans les discothèques avec des images très géométriques en « fils de fer ». Mais c’est aussi celle retenue pour des applications nomades (picoprojecteur) comme l’intégration dans des PDAs ou des téléphones portables de systèmes de projections monochromes ou couleurs ultra miniaturisés grâce aux technologies MEMs. La miniaturisation des éléments permet une grande vitesse de balayage rendant possible l’affichage de signaux HDTV. La société Arasor en fait la démonstration sur un prototype de rétroprojecteur en 2007.

Les vidéoprojecteurs LCOS

LCOS pour Liquid Crystal on Silicon, est une évolution des vidéoprojecteurs LCD . Le principe est d’utiliser une surface réfléchissante en silicium recouverte d’une couche de cristaux liquides, permettant de réfléchir ou de bloquer les rayons lumineux[1] comme le font déjà les systèmes concurrent DLP.

Les avantages sont la qualité d’image plus précise et contrastée, les couleurs souvent mieux rendues[1].

L’inconvénient est le prix plus élevé.

Les technologies hybrides

LASER + MATRICE

Une source lumineuse peut être générée par un trio de lasers R-V-B pour fournir une lumière idéalement équilibrée aux trois panneaux à cristaux liquides (LCD), ils remplacent la traditionnelle lampe. Cette solution a été choisie par le constructeur Sony avec un rétroprojecteur à matrices SXRD et par Mitsubishi pour son prototype de rétroprojecteur HD mais avec la technologie DLP de Texas Instrument (micro-miroirs) avec une seule puce et un affichage séquentiel des couleurs. Les avantages par rapport à l’utilisation de la lampe sont : faible consommation (-70 %), luminosité et colorimétrie étendue.


VALVE DE LUMIÈRE

RUBAN À DIFFRACTION .........GLV

Sony a développé le concept GxL sur une technologie à base de circuits GLV (Grating Light Valve). Trois rubans verticaux de 1 080 pixels se chargent de moduler la lumière de trois sources laser R-V-B en la diffractant grâce aux décalages de lamelles réflectives qui constituent chaque pixel, puis un miroir monté sur un galvanomètre balaye horizontalement la surface de l’écran pour déplacer l’image de la bande de pixels aux trois couleurs superposées, la persistance rétinienne faisant le reste. Une démonstration a eu lieu en 2005 au Japon sous le nom de « Laser dream theater » avec trois projecteurs dans un format d’image extra-large sur un écran de 10 m de haut sur 50 m de long. Capable d’un taux de contraste supérieur à 10 000:1, de fréquences élevées supérieures à 60 Hz, doué d’une colorimétrie deux fois supérieure aux meilleurs phosphores et en plus robuste, cette technique qui est aussi la plus coûteuse peut satisfaire les salles les plus exigeantes. La société E&S propose une solution comparable pour les simulateurs et les planétariums.

TUBE CATHODIQUE RÉFLECTIF ...ILA

Un tube cathodique est utilisé pour moduler à sa surface une couche de cristaux liquides pour faire varier la lumière incidente d’une lampe de forte puissance. La puissance lumineuse n’est plus liée au tube CRT mais à la lampe utilisé. L’image s’affiche de la même manière qu’avec un tritube avec toutefois un contraste, un taux de rafraichissement et des couleurs moins bonnes. Conçu pour les très grandes tailles d’écrans pendant les années 1980 par HUGUES-JVC, ce procédé est aujourd’hui abandonné au profit des DLP et LCOS.

Les vidéoprojecteurs DIY

Wikibooks-logo-fr.png

Wikibooks propose un ouvrage abordant ce sujet : Vidéoprojecteur DIY.

Les vidéoprojecteurs DIY (Do It Yourself : « fais-le toi-même ») sont des appareils montés de manière artisanale. Un vidéoprojecteur « DIY » a besoin des éléments suivants :

  • un système d’éclairage (les lampes de type HQI employées pour les aquariums sont les plus utilisées)
  • deux lentilles de Fresnel (plaques en acrylique faisant office de lentilles convergentes et que l’on trouve dans les rétroprojecteurs) ;
  • une dalle à cristaux liquides (provenant d’un écran d’ordinateur de type LCD) ;
  • un objectif (appelé communément « triplet »).

L’avantage de ce système est l’adaptabilité, le faible coût de revient des consommables (ampoules HQI) et la possibilité de dépannage personnel.

L’inconvénient majeur reste le manque de luminosité comparé à un vidéoprojecteur industriel mais aussi la taille finale de l’appareil, en fonction de la dalle utilisée.

Notes et références

  1. a , b , c , d , e , f , g  et h Videoprojecteur-news.com - Dossier technique comparatif

Voir aussi


  • Portail de l’électricité et de l’électronique Portail de l’électricité et de l’électronique
Ce document provient de « Vid%C3%A9oprojecteur ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Vidéoprojection de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • vidéoprojection — ● vidéoprojection nom féminin Projection d une image de télévision sur un grand écran …   Encyclopédie Universelle

  • FRANK LALOU — Frank Lalou, né le 14 février 1958 à Marmande, est un écrivain spécialiste de certains textes bibliques et calligraphe hébraïque. Sommaire 1 Biographie 2 Ses créations …   Wikipédia en Français

  • Frank Lalou — Frank Lalou, né le 14 février 1958 à Marmande, est un écrivain spécialiste de certains textes bibliques et calligraphe hébraïque. Sommaire …   Wikipédia en Français

  • Picoprojecteur — Un picoprojecteur est un vidéoprojecteur miniaturisé qui peut éventuellement être intégré dans un équipement numérique portable (PDA, ordinateur portable, téléphone mobile, récepteur de télévision mobile...)[1]. Sommaire 1 Étymologie 2 Principes… …   Wikipédia en Français

  • vidéo- — ♦ Élément, du lat. videre « voir », entrant dans la composition de mots du vocabulaire de l audiovisuel (vidéofréquences). ⇒VIDÉ(O) , (VIDÉ , VIDÉO )élém. formant Élém. tiré du subst. vidéo, entrant dans la constr. de termes sc. et techn. dont… …   Encyclopédie Universelle

  • Gijs Andriessen — is a Dutch videographer and composer living in Rio de Janeiro, Brazil.Son of composer Jurriaan Andriessen. Grandson of composer Hendrik Andriessen. He was born in 1957 in Den Haag, the Netherlands. He finished the Netherlands Film and Television… …   Wikipedia

  • Antonello Matarazzo — Infobox Artist name = Antonello Matarazzo birthname = Antonello Matarazzo birthdate = birth date|1962|2|23 location = flagicon|Italy Avellino, Italy nationality = Italian (Europe) field = Painting, Cinema, Video installation movement = Medialismo …   Wikipedia

  • Irena Paskali — (* 1969 in Ohrid, Jugoslawien) ist eine zeitgenössische mazedonische Künstlerin, die insbesondere durch ihrer Werke mit sozio politischem Hintergrund provoziert. Inhaltsverzeichnis 1 Leben 2 Künstlerisches Schaffen 3 Preise und Auszeichnunge …   Deutsch Wikipedia

  • Paskali — Irena Paskali (* 1969 in Ohrid, Mazedonien) ist eine zeitgenössische mazedonische Künstlerin, die insbesondere durch ihrer Werke mit sozio politischem Hintergrund provoziert. Inhaltsverzeichnis 1 Leben 2 Künstlerisches Schaffen 3 Preise und… …   Deutsch Wikipedia

  • 3:2 pulldown — Télécinéma Le télécinéma est le nom donné aux différentes techniques optiques et électroniques permettent de convertir un film (pellicule argentique) en source vidéo, principalement adaptée à la télédiffusion, à l enregistrement (magnétoscope) ou …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”