Theoreme de plongement de Whitney

Theoreme de plongement de Whitney

Théorème de plongement de Whitney

En topologie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous-variété de l'espace vectoriel réel Rn : toute variété différentielle de dimension m peut être plongée dans l'espace euclidien de dimension 2m. Cette valeur 2m peut bien sûr être diminuée dans certains exemples particuliers, mais pour l'exemple de l'espace projectif réel de dimension m, la constante 2m est optimale.

Remarque historique

La preuve du théorème, en 1936, fut l'occasion pour Hassler Whitney de donner la première formulation complète du concept de variété différentielle, concept déjà utilisé de façon implicite dans les travaux de Riemann, les travaux sur les groupes de Lie, et en relativité générale depuis de nombreuses années. Cette formulation utilisa et permit de dépasser celle de Hermann Weyl dans son livre de 1913, Die Idee der Riemannschen Fläche (Le concept de surface de Riemann).

Éléments de démonstration

Optimalité

Soit une variété différentielle M de dimension m, plongée dans l'espace Rm+n. Le fibré normal est un fibré vectoriel de base M et de rang n, dont la classe totale de Stiefel-Whitney w ' est l'inverse de la classe totale de Stiefel-Whitney w du fibré tangent de M. Les identités w 'i=0 pour i>n impliquent compte-tenu de w fixé des contraintes sur N dépendant de la topologie globale de M.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Th%C3%A9or%C3%A8me de plongement de Whitney ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Theoreme de plongement de Whitney de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Théorème de plongement de whitney — En topologie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous variété de l espace vectoriel réel Rn : toute variété différentielle de dimension m peut être plongée dans l… …   Wikipédia en Français

  • Théorème de plongement de Whitney — En topologie différentielle, le théorème de plongement de Whitney fait le lien entre les notions de variété abstraite et de sous variété de l espace vectoriel réel Rn : toute variété différentielle de dimension m peut être plongée dans l… …   Wikipédia en Français

  • Théorème de plongement de Nash — En géométrie différentielle, le théorème de plongement de Nash, dû au mathématicien John Forbes Nash, affirme que toute variété riemannienne peut être plongée de manière isométrique dans un espace euclidien. « De manière isométrique »… …   Wikipédia en Français

  • Plongement d'une variété dans un espace euclidien — Dans de nombreuses branches des mathématiques, on peut être amené à comparer deux « objets » entre eux en plongeant l un dans l autre. Un cas particulier consiste à plonger une variété différentielle dans un espace euclidien. Pour… …   Wikipédia en Français

  • Hassler Whitney — Pour les articles homonymes, voir Whitney. Hassler Whitney (23 mars 1907 – 10 mai 1989) est un mathématicien américain et un des fondateurs de la théorie des singularités (en). Biographie Il …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

  • Liste des articles de mathematiques — Projet:Mathématiques/Liste des articles de mathématiques Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou probabilités et statistiques via l un des trois bandeaux suivants  …   Wikipédia en Français

  • Variete differentielle — Variété différentielle En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s agit de variétés sur lesquelles il est possible d… …   Wikipédia en Français

  • Variété différentiable — Variété différentielle En mathématiques, les variétés différentielles ou variétés différentiables sont les objets de base de la topologie différentielle et de la géométrie différentielle. Il s agit de variétés sur lesquelles il est possible d… …   Wikipédia en Français

  • Catégorie des variétés différentielles — Variété (géométrie) Pour les articles homonymes, voir Variété. Réalisation du ruban de Möbius, à partir du collage d une bande de papier. Le bord n est que d …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”