Ressort idéal

Ressort idéal

Ressort (mécanique élémentaire)

Ressort de traction (dessin)
Ressort de traction (photographie)

Les ressorts sont fréquemment utilisés pour l'enseignement élémentaire de la mécanique. On s'intéresse en particulier à des ressorts dont l'allongement est proportionnel à la force à laquelle ils sont soumis. Dans le cas général, la déformation d'un ressort n'est pas proportionnelle à la sollicitation, mais ce cas particulier présente un intérêt pédagogique puisqu'il permet une étude simple.

On utilise en général un ressort de traction, et parfois un ressort de compression ou un ressort de torsion.

Sommaire

Cas du ressort de traction ou du ressort de compression

Le ressort a une longueur à vide l0. Si on veut l'allonger (ressort de traction) ou le raccourcir (ressort de compression) d'une longueur x, il faut exercer deux forces égales et opposées à ses extrémités ; on ne considère en général que la force à une des extrémités, \vec{F}_{ext}, orientée dans l'axe du ressort, et dont l'intensité vaut :

\| \vec{F}_{ext} \| = k \cdot | x |,

k est la constante de proportionnalité, appelée « constante de raideur » du ressort, exprimée en newton par mètre (N/m ou N⋅m-1).

D'après le principe des actions réciproques (3e loi de Newton), la force \vec{F}_{res} qu'exerce le ressort vaut

\vec{F}_{res} = - \vec{F}_{ext}.

L'allongement x est une longueur algébrique ; par convention, on la prend positive dans le cas de l'allongement et négative dans le cas de la compression : la longueur finale du ressort vaut

l = l0 + x.

Et par convention, l'intensité Fres de la force qu'exerce le ressort \vec{F}_{res} est également une valeur algébrique, prise positive dans le cas de la compression et négative dans le cas de la traction. On a donc de manière générale :

Fres = -kx.

Dans cette étude élémentaire, on ne distingue en fait pas le ressort de traction du ressort de compression, alors que technologiquement les deux sont bien distincts. On travaille donc avec les hypothèses suivantes :

  • les spires sont non jointives ;
  • il n'y a pas de dissipation d'énergie (la force est conservative) ;
  • on reste dans un domaine où la réponse est toujours linéaire (la déformation est limitée).

Le travail de la force extérieure pour passer d'un allongement nul à un allongement X est

W_{\vec{F}_{ext}} = \int_0^X F_{ext}\cdot dx = \int_0^X k \cdot x \cdot dx ,

d'où

W_{\vec{F}_{ext}} = \frac{1}{2} k \cdot X^2.

On peut ainsi définir l'énergie potentielle élastique Epe d'un ressort d'allongement X :

E_{pe} = \frac{1}{2} k \cdot X^2

Ressort et étude de balistique

Ressort de compression (dessin)
Ressort de compression (photographie)

On prend souvent le cas d'un bille propulsée par un ressort ; il s'agit dans ce cas-là d'un ressort de compression (à spires non jointives). Si l'on néglige les frottements, ce système permet d'écrire la conservation de l'énergie mécanique, ce qui permet de déterminer la vitesse de la bille lorsqu'elle quitte le ressort, puis de mener l'étude de chute libre classique.



Pendule pesant

Oscillations harmoniques d'un pendule pesant

Le pendule pesant est un ressort de traction au bout duquel on accroche une masse ; lorsque le système est au repos (la masse est immobile dans le référentiel du laboratoire), le ressort a un allongement non nul, les spires sont non jointives. Par rapport à cette position de repos, on peut donc étirer ou comprimer le système (mais le ressort restera en traction).

Si l'on tire la masse vers le bas et qu'ensuite on la lâche, le système va osciller. Ceci permet d'aborder les oscillations harmoniques et les équations différentielles permettant cette étude.

On peut mettre une sollicitation périodique en haut du ressort, par exemple un système de manivelle tournant imposant une force dont l'intensité varie dans le temps selon une loi sinusoïdale. On peut ainsi étudier les oscillations forcées.

On peut plonger la masse dans un récipient d'eau afin d'augmenter les frottements et ainsi étudier les oscillations amorties ou les oscillations forcées avec dissipation.

Article détaillé : Système masse-ressort.

Cas du ressort de torsion

On étudie fréquemment la torsion d'un fil ; on prend le fil vertical afin de ne pas avoir à prendre le poids en compte. Tant que la sollicitation reste faible, le couple Γ à appliquer est proportionnel à l'angle de torsion θ :

Γ = - C⋅θ

C est la raideur du ressort.

On peut se servir de ce système pour étudier les forces électrostatiques (balance de torsion), ou encore les oscillations (pendule de torsion).

C'est aussi le modèle pour un certain nombre de dispositifs comme par exemple l'ampèremètre dit « balistique ».

Voir aussi

Sur les autres projets Wikimedia :

  • Portail de la physique Portail de la physique
Ce document provient de « Ressort (m%C3%A9canique %C3%A9l%C3%A9mentaire) ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Ressort idéal de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Ressort ideal — Ressort (mécanique élémentaire) Ressort de traction (dessin) …   Wikipédia en Français

  • Ressort — Pour les articles homonymes, voir Ressort (homonymie). Un ressort est un organe ou pièce mécanique qui utilise les propriétés élastiques de certains matériaux pour absorber de l énergie mécanique, produire un mouvement, ou exercer un effort ou un …   Wikipédia en Français

  • Analyse Mécanique Dynamique — Viscoanalyseur Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • Analyse mécanique dynamique — Viscoanalyseur Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • Analyseur viscoélastique — Viscoanalyseur Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • DMTA — Viscoanalyseur Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • Dynamic mechanical analysis — Viscoanalyseur Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • Viscoanalyseur — Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils d’analyse thermique de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • Viscoélasticimètre — Viscoanalyseur Pour les articles homonymes, voir AMD et DMA. Un viscoanalyseur ou analyseur mécanique dynamique (AMD) fait partie de la famille des appareils de DMA ou DMTA (en anglais Dynamic Mechanical Thermal Analysis). Cet instrument… …   Wikipédia en Français

  • Dynamomètre — Un dynamomètre est un appareil de mesure d une force ou d un couple. Il utilise un ressort (cas d un modèle simple) dont on connaît la raideur définie par le module d élasticité, ou une cellule à jauge de déformation. Le peson est son nom d… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”