- Poids
-
Cet article possède des paronymes, voir : Poa, Poi, Pois (homonymie) et Poix. Le poids est la force de pesanteur, d'origine gravitationnelle et inertielle, exercée par la Terre sur un corps massique en raison uniquement du voisinage de la Terre[1]. Elle est égale à l'opposé de la résultante des autres forces appliquées au centre de gravité du corps lorsque celui-ci est immobile dans le référentiel terrestre. Cette force est la résultante des efforts dus à la gravité et à la force d'inertie d'entraînement due à la rotation de la Terre sur elle-même. Elle s'applique au centre de gravité du corps et sa direction définit la verticale qui passe approximativement par le centre de la Terre. Le poids est une action à distance toujours proportionnelle à la masse.
En toute rigueur le poids n'est défini que dans le référentiel terrestre et ne prend en compte que les effets gravitationnels et inertiels. Néanmoins, lorsqu'on prend également en compte d'autres forces telles que de la poussée d'Archimède par exemple, ou qu'on étudie l'équilibre d'un corps dans un référentiel en mouvement dans le référentiel terrestre, on parle alors de poids apparent.
Sommaire
Définition
Définition légale
D'après le BIPM[2] :
- Le terme poids désigne une grandeur de la même nature qu'une force ; le poids d'un corps est le produit de la masse de ce corps par l'accélération de la pesanteur ; en particulier, le poids normal d'un corps est le produit de la masse de ce corps par l'accélération normale de la pesanteur ;
- Le nombre adopté dans le Service international des Poids et Mesures pour la valeur de l'accélération normale de la pesanteur est 980,665 cm/s², nombre sanctionné déjà par quelques législations.
Définition expérimentale
Le poids d'un corps (de masse m) est la force de pesanteur exercée sur lui et qui s'oppose à la force résultante de celles qui le maintiennent à l'équilibre dans le référentiel terrestre (c’est-à-dire, lié à l'objet solide Terre en rotation). Cette définition fait que sa détermination expérimentale est aisée, par exemple à l'aide d'un fil à plomb maintenu à l'équilibre : le poids est défini comme l'opposé de la tension du fil et sa direction est celle du fil[3]. La direction du fil définit la verticale.
D'une manière générale le poids est la somme de l'attraction universelle des autres masses et de la force d'inertie d'entraînement due au fait que le référentiel terrestre n'est pas un référentiel galiléen. Quel que soit le corps, le rapport du poids () à sa masse (m) est identique et noté : où est l'accélération de la pesanteur ( est en unité m.s-2, qui est l'unité de l'accélération).
Sur Terre, cette accélération est d'environ 9,81 m/s². Les écarts (toujours locaux) entre le champ de pesanteur théorique et le champ mesuré sont appelés des anomalies de pesanteurs. Le poids P s'exprime en newton (N) et la masse m étant en kilogramme (kg). Ainsi, une masse de 100 g (0,1 kg) a un poids d'environ 1 N, une masse de 1 kg a un poids d'environ 10 N, une masse de 10 kg a un poids d'environ 100 N. C'est la raison pour laquelle, dans les domaines techniques, on travaille souvent en décanewtons (daN) : un objet de 1 kg a un poids d'environ 1 daN ; auparavant, on utilisait le kilogramme-force (kgf), unité désuète.
La notion de poids n'est pas uniquement terrestre et peut-être étendue aux autres planètes. Par ailleurs, la rotation de la Terre provoque une force centrifuge qui contribue également au poids.
Le poids est une force, son intensité s'exprime donc en newton (N), ou éventuellement en décanewton (daN) ou kilonewton (kN). Dans le langage courant, on assimile le poids à la masse et on l'exprime de manière erronée en kilogramme. Si le poids d'un corps dépend de sa position sur la Terre (ou si on le considère à la surface d'une planète plus ou moins grosse), sa masse n'en dépend pas.
Remarques
La masse m s'exprimant en kilogramme (kg), le poids est une force et possède donc comme unité le newton (symbole N), et l'accélération g sera indifféremment exprimée en N/kg ou en m/s².
La non-distinction entre masse et poids dure jusqu'au XIXe siècle,[réf. nécessaire] et perdure dans le langage courant. Par exemple : « la masse corporelle d'une personne » est usuellement appelée son « poids ». Il en résulte une difficulté pédagogique, au moment où cette distinction est enseignée. L'adoption du Système international (S.I.) a permis grâce à la suppression de l'unité kilogramme-poids de résoudre partiellement cette difficulté, mais on utilise fréquemment le décanewton (daN) pour retrouver cette équivalence masse-poids sur Terre.
L'accélération de pesanteur g est l'objet d'étude de la gravimétrie. Elle varie en tout point de la Terre, essentiellement diminuant du pôle (9,83 m/s²) à l'équateur (9,78 m/s²). En France, on prend conventionnellement la valeur de g à Paris, soit environ :[réf. nécessaire]
- g = 9,81 m/s².
Calcul approché du poids terrestre
Sachant que le rayon R de la Terre est égal à 6 380 km et sa masse M à 5,98x1024 kg, on peut déterminer une valeur approchée de la constante g qui s'exerce sur un objet quelconque de masse m en ne tenant compte que de l'attraction gravitationnelle de la Terre et en négligeant la force d'inertie d'entraînement :
On rappelle que G est la constante universelle de gravitation.
Poids apparent
Il existe principalement deux situations dans lesquelles la notion de poids apparent est pertinente :
- en cas de poussée d'Archimède non négligeable,
- en cas d'étude dans un référentiel en mouvement accéléré ou en mouvement de rotation dans le référentiel terrestre et nécessitant la prise en compte, d'une force d'inertie d'entraînement supplémentaire ; c'est le cas par exemple d'une étude dans un référentiel lié au cockpit d'un avion ou à l'habitacle d'une voiture.
Le poids apparent d'un objet correspond au poids indiqué par un peson (dynamomètre) (ou tout autre instrument approprié à la mesure d'une force), quand ce poids n'est pas identique au poids « réel » de l'objet, défini comme la force due à la pesanteur[4].
Exemples
Poussée d'Archimède
Par exemple, si l'on pesait un objet sous l'eau, la poussée d'Archimède ferait paraître l'objet plus léger et le poids mesuré serait inférieur au poids réel. Évidemment, dans la vie quotidienne, quand on pèse un objet, la poussée d'Archimède exercée par l'air ambiant est à toutes fins utiles négligeable.
Référentiel accéléré
Pesons un objet en le suspendant à un dynamomètre. Il sera effectivement soumis à deux forces : son poids, orienté[5] vers le bas, et la force exercée par le dynamomètre, orientée vers le haut. Quand l'objet n'accélère pas, les deux forces ont la même grandeur et le dynamomètre indique le poids réel de l'objet. Toutefois, si l'on effectue la mesure dans un ascenseur pendant que celui-ci se met en mouvement vers le haut, la force exercée par le dynamomètre sera supérieure au poids (du moins aux yeux d'un observateur immobile situé à l'extérieur de l'ascenseur), conformément à la deuxième loi du mouvement de Newton :
- F – P = ma ,
où F est la force exercée par le dynamomètre, P le poids de l'objet et a l'accélération de l'ascenseur (et du dynamomètre).
Étant donné que le poids indiqué par le dynamomètre correspond à l'intensité F de la force qu'exerce sur lui l'objet à peser[6] (cette force étant la réaction à la force que le dynamomètre exerce sur l'objet), ce poids « apparent » est supérieur au poids réel (F > P, car a > 0).
Pour un observateur situé dans l'ascenseur, l'objet à peser apparaît évidemment immobile. En ce cas, pour expliquer que la force exercée par le dynamomètre est supérieure au poids réel de l'objet, on doit faire intervenir une force d'inertie orientée vers le bas.
Le poids normal d'une personne de 70 kg soumise à l'accélération de la pesanteur g = 9,8 m/s² est égal à mg, vaut (70 kg) (9,8 m/s²) = 686 N.
Dans un ascenseur qui décélère à 2 m/s², la personne est soumise à deux forces : d'une part son poids réel P, orienté vers le bas, et d'autre part la réaction N, orientée vers le haut, exercée sur elle par le plancher de l'ascenseur (ou le pèse-personne sur lequel elle se tient). Quand l'ascenseur freine, son accélération est orientée dans le sens opposé à la vitesse, c'est-à-dire en l'occurrence vers le bas.
En orientant l'axe de référence vers le haut, on écrira donc, conformément à la deuxième loi de Newton :
- N – P = m(–a)
- N – mg = –ma
- N = mg – ma
- N = m (g – a)
- N = (70 kg) [(9,8 m/s²) – (2 m/s²)] = 546 N
On obtient un poids apparent de 546 N, inférieur au poids réel.
Impesanteur
L'état d'impesanteur expérimenté par les spationautes est dû à la rotation de leur habitacle spatial autour de la Terre. Quand ce mouvement de rotation est important la force d'inertie ressentie par les astronautes peut annuler leur poids apparent, bien que leur poids réel, à 386 km d'altitude, ne soit qu'environ 11 % plus faible que sur Terre.
Comme source d'énergie
Article détaillé : Énergie potentielle de gravité.La descente de poids permet d'actionner un mécanisme tel qu'un automate ou une horloge. Ce type de dispositif a été remplacé par un ressort moteur, mais est toujours utilisé pour produire de l'électricité (barrage hydroélectrique).
Autres significations
Abus de langage
Par abus de langage, le mot « poids » est couramment utilisé comme synonyme de la masse (exemple : Son poids est de 70 kg est faux, la bonne « formule » serait Sa masse est de 70 kg). En physique, le mot « poids » est souvent utilisé pour désigner la force de pesanteur exercée par la Terre sur un objet, la poussée d'Archimède dans l'air étant négligeable dans de nombreux cas.
Mathématiques
Le poids, en mathématiques, est aussi la valeur que l'on attribue à un symbole en fonction de sa place dans un nombre.
- exemple : 101 = 100 + 1. Le premier '1' a un poids de 100 (car en troisième position en partant de la droite), tandis que le second '1' à un poids unité (première position en partant de la droite). L'association des deux forme la valeur 101.
Le poids est aussi le coefficient ou pondération affecté à un point dans un barycentre (en référence à la physique où le barycentre fait appel aux masses)
- exemple: si G est le barycentre du système {(A , 1)(B , 3)} , on dit que A est affecté du poids 1 et B du poids 3
Informatique
En informatique, les termes relatifs au poids d'un solide sont également parfois employés par analogie avec la taille d'un fichier (poids d'un fichier, fichier lourd, fichier léger), et la consommation des ressources d'un processus (processus léger).
Notes et références
- Presses universitaires de France, Paris, 1988, page 623 Élie Lévy, Dictionnaire de physique,
- « Résolution de la 3e réunion de la CGPM (1901). Déclaration relative à l'unité de masse et à la définition du poids ; valeur conventionnelle de gn », BIPM.
- Presses universitaires de France, Paris, 1988, page 601 Élie Lévy, Dictionnaire de physique,
- correction qui tient compte du mouvement de rotation de la Terre. La notion de pesanteur terrestre inclut une
- force, est une quantité vectorielle qui possède une orientation dans l'espace, c'est-à-dire une direction et un sens. Le poids, comme toute
- masse du ressort soit négligeable. À condition, quand le dynamomètre est lui-même soumis à une accélération, que la
Voir aussi
Articles connexes
- Pesanteur
- Gravité
- Force (physique)
- Mécanique céleste
- Astronautique
- Impesanteur
- Masse
- Masse corporelle humaine
Lien externe
- http://sc.physiques.free.fr/htmlfiles/cours/foy/poids.htm (dans un ascenseur)
Wikimedia Foundation. 2010.