Problème bien posé

Problème bien posé

Le concept mathématique de problème bien posé provient d'une définition de Hadamard qui pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes :

  1. Une solution existe
  2. La solution est unique
  3. La solution dépend de façon continue des données dans le cadre d’une topologie raisonnable.

Exemples

Le problème de Dirichlet pour l’équation de Laplace et l’équation de la chaleur avec spécification de conditions initiales sont des formulations bien posées. Ces problèmes peuvent être qualifiés de « naturels », dans le sens où il existe des processus physiques dont les grandeurs observées constituent des solutions à ces problèmes.


L’inversion du temps dans l’équation de la chaleur, c'est-à-dire le problème consistant à déduire une distribution passée de la température à partir d’un état final n’est au contraire pas bien posé ; sa solution est en effet très sensible à des perturbations de l’état final. Il est fréquent que les problèmes inverses ne soient pas bien posés. Bien qu’ils soient typiquement continus en termes d’analyse fonctionnelle, la recherche d’une solution numérique à l’aide de méthodes discrètes (« discrétisation » de l’espace et du temps) s’avère intrinsèquement instable, c'est-à-dire que de simples erreurs d’arrondis dans les données ou l’augmentation de la précision de la méthode exercent sur les résultats des effets « considérables ».


En mécanique des milieux continus, un problème bien posé est un problème dans lequel la frontière \partial\Omega du domaine considéré admet une partition en deux sous-ensembles \partial_1\Omega et \partial_2\Omega sur lesquels les conditions de bord imposées concernent les déplacements pour le premier et les efforts pour le second.

Si un problème de mécanique est bien posé, la solution en contrainte existe et est unique, alors que la solution en déplacement ne l’est pas nécessairement lorsque des mouvements de corps rigides sont possibles.

De plus, la partition de la frontière peut s’opérer suivant les trois directions de l’espace. Plus précisément, sur une même partie de la frontière, il est possible d’imposer à la fois un déplacement et un effort si ces deux contraintes concernent des directions orthogonales de l’espace.

Mesures et solutions

Le nombre conditionnel est une mesure du degré plus ou moins élevé avec lequel le problème est bien posé. Pour les problèmes linéaires, il s’agit de la condition de la matrice.

Si un problème est bien posé, il y a de fortes chances qu’il existe un algorithme stable susceptible de déterminer une solution approchant la solution exacte. Sinon, il convient de reformuler ou de transformer le problème d’origine avant d’envisager un traitement numérique. Typiquement, des hypothèses supplémentaires peuvent s’avérer nécessaires, concernant par exemple la régularité de la solution. Dans le cadre d’un système linéaire dont la matrice est mal conditionnée, un tel processus est connu sous le nom de régularisation Tychonoff.

Références

  • Jacques Hadamard, Sur les problèmes aux dérivées partielles et leur signification physique, Princeton University Bulletin, 1902, p. 49—52.

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Problème bien posé de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Probleme bien pose — Problème bien posé Le terme mathématique de problème bien posé provient d une définition de Hadamard. Il pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes : Une solution existe La solution …   Wikipédia en Français

  • Problème mal posé — Problème bien posé Le terme mathématique de problème bien posé provient d une définition de Hadamard. Il pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes : Une solution existe La solution …   Wikipédia en Français

  • Problème numérique — Analyse numérique Simulation numérique d un crash de véhicule L’analyse numérique est une discipline des mathématiques. Elle s’intéresse tant aux fondements théoriques qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs… …   Wikipédia en Français

  • problème — [ prɔblɛm ] n. m. • 1382; lat. problema, du gr. problêma 1 ♦ Question à résoudre qui prête à discussion, dans une science. Problèmes philosophiques, moraux, métaphysiques. Le problème du mal. Soulever un problème. C est là la clé, le nœud du… …   Encyclopédie Universelle

  • Probleme de la decision — Problème de la décision En logique mathématique, on appelle problème de la décision le fait de déterminer de façon mécanique, par un algorithme, si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est à dire s il se dérive… …   Wikipédia en Français

  • Probleme d'éthique — Éthique Pour les articles homonymes, voir Éthique (homonymie). Manifestation pour abolir le travail des enfants, New York, 1 …   Wikipédia en Français

  • Problème de la décision — En logique mathématique, on appelle problème de la décision le fait de déterminer de façon mécanique, par un algorithme, si un énoncé est un théorème de la logique égalitaire du premier ordre, c’est à dire s il se dérive dans un système de… …   Wikipédia en Français

  • Probleme de la mesure quantique — Problème de la mesure quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique H …   Wikipédia en Français

  • Problème de la mesure — quantique Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique H …   Wikipédia en Français

  • Probleme corps-esprit — Problème corps esprit Y a t il un esprit dans la machine ? Le problème corps esprit est le problème de la détermination des relations entre le corps humain et l esprit. Bien que ce problème existe presque depuis l origine de la philosophie… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”