Analyse Fréquentielle

Analyse Fréquentielle

Analyse fréquentielle

L'analyse fréquentielle, ou analyse de fréquences, est une méthode de cryptanalyse découverte par Al-Kindi au IXe siècle. Elle consiste à examiner la fréquence des lettres employées dans un message chiffré. Cette méthode est fréquemment utilisée pour décoder des messages chiffrés par substitution, dont un exemple très simple est le chiffre de César.

L'analyse fréquentielle est basée sur le fait que, dans chaque langue, certaines lettres ou combinaisons de lettres apparaissent avec une certaine fréquence. Par exemple, en français, le e est la lettre la plus utilisée, suivie du a et du s. Inversement, le w est peu usité.

Ces informations permettent aux cryptanalystes de faire des hypothèses sur le texte clair, à condition que l'algorithme de chiffrement conserve la répartition des fréquences, ce qui est le cas pour des substitutions mono-alphabétiques et poly-alphabétiques. Une deuxième condition est nécessaire pour appliquer cette technique : c'est la longueur du message à décrypter. En effet, un texte trop court ne reflète pas obligatoirement la répartition générale des fréquences des lettres. De plus, si la clé est de la même longueur que le message, il ne pourra y avoir des répétitions de lettres et l'analyse fréquentielle sera impossible.

Sommaire

Découverte

Première page du Manuscrit sur le déchiffrement des messages cryptographiques d'Al-Kindi

L'analyse fréquentielle a été découverte au IXe siècle par Al-Kindi. Il expose les fondements de cette méthode de cryptanalyse dans son traité intitulé Manuscrit sur le déchiffrement des messages cryptographiques. Il découvre qu'un message chiffré conserve la trace du message clair original en gardant les fréquences d'apparitions de certaines lettres.

Principe

Fréquence d'apparition des lettres en fonction de la langue

On peut constater que selon la langue, un texte comportera une répartition particulière des fréquences de lettres. Par exemple en français les lettres les plus fréquentes, c’est-à-dire les lettres que l'on trouve le plus souvent, sont le E, suivi du A, du I et du S ... On obtient la répartition de fréquences des lettres suivante (en %) :


A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Français 9,42 1,02 2,64 3,39 15,87 0,95 1,04 0,77 8,41 0,89 0,00 5,34 3,24 7,15 5,14 2,86 1,06 6,46 7,90 7,26 6,24 2,15 0,00 0,30 0,24 0,32
Anglais 8.08 1.67 3.18 3.99 12.56 2.17 1.80 5.27 7.24 0.14 0.63 4.04 2.60 7.38 7.47 1.91 0.09 6.42 6.59 9.15 2.79 1.00 1,89 0,21 1,65 0,07

Ce qui nous donne l'ordre suivant.

E A I S T N R U L O D M P C V Q G B F J H Z X Y K W

Cette répartition des fréquences des lettres n'est qu'approximative, cela dépend de nombreux paramètres tels que le niveau de langue du texte, ainsi que du style d'écriture (Par exemple un message militaire utilisera souvent de nombreuses abréviations). On peut aussi analyser la fréquence des bigrammes dans un texte, c’est-à-dire la fréquence des groupes de deux lettres. Cela amenera des indices importants pour décrypter un texte chiffré car on sait que l'on ne pourra trouver des bigrammes tels que XK ou WX dans le texte clair.

Application au jeu du Scrabble

On peut remarquer que ces fréquences correspondent à peu de choses près aux distributions des lettres dans le jeu du Scrabble, celle-ci rapportant plus ou moins de points en fonction de leur fréquence d'utilisation. En effet, la répartition des lettres avec le nombre de points correspondant est la suivante :

A1 B3 C3 D2 E1 F4 G2 H4 I1 J8 K10 L1 M2 N1 O1 P3 Q8 R1 S1 T1 U1 V4 W10 X10 Y10 Z10
9 2 2 3 15 2 2 2 8 1 1 5 3 6 6 2 1 6 6 6 6 2 1 1 1 1

La répartition des lettres du premier exemplaire du jeu du Scrabble a d'ailleurs été faite par analyse statistique du New York Times.

Déchiffrement d'un texte codé par un chiffrement monoalphabétique à l'aide de l'analyse fréquentielle

La répartition des fréquences obtenues peut être utilisée pour décrypter un message codé par un chiffre de substitution. En effet, si l'on découvre une lettre très fréquente dans le message chiffré, il s'agira sans doute de la lettre E dans le message clair car c'est la lettre la plus courante en français. Nous pouvons ensuite en déduire les autres lettres en étudiant toutes les fréquences des lettres du message chiffré. Par exemple, considérons le message chiffré suivant :

  • segelazew aop qj lnkfap z ajyuyhklazea cnwpqepa aynepa ykklanwperaiajp

Il faut donc calculer les fréquences d'apparition de chacune des lettres du message chiffré afin de les comparer à la répartition normale des fréquences des lettres en français. On obtient la répartition des fréquences (en %) suivante pour ce message chiffré :

Lettres A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Occurrences 12 0 1 0 7 1 1 1 1 3 4 4 0 4 1 7 2 1 1 0 1 0 3 0 4 3 62
Fréquences 19,4 0 1,6 0 11,3 1,6 1,6 1,6 1,6 4,8 6,5 6,5 0 6,5 1,6 11,3 3,2 1,6 1,6 0 1,6 0 4,8 0 6,5 4,8 100

Nous pouvons donc constater que c'est la lettre A qui est la plus fréquente dans le message chiffré. Celle-ci a donc de grande chance de représenter la lettre E dans le message clair, car c'est la lettre la plus courante en français. Le E et le P sont également fréquents dans le texte chiffré, ils représentent donc sûrement les lettres S ou A du texte clair. Ces suppositions nous amènent à retrouver une partie du texte non chiffré, ce qui va permettre de déduire à partir de ces quelques lettres une partie de la clé. Dans le cas d'un chiffre de substitution monoalphabétique, nous pouvons avoir affaire à un chiffrement de César, nous obtiendrons alors dans ce cas un décalage de 4 lettres puisque l'on a supposé A=E. Muni de cette clé, nous pouvons décrypter le reste du message, ce qui nous donne :

  • Wikipédia est un projet d'encyclopédie gratuite écrite coopérativement.

Ce message est cohérent, nos suppositions de départ étaient exactes.

L'analyse fréquentielle intervient également, combinée à d'autres méthodes, pour la cryptanalyse de chiffrements plus complexes. Par exemple l'analyse des chiffrements polyalphabétiques tels le chiffre de Vigenere, sont ramenés à celle d'un chiffrement par substitution, après une recherche de coïncidences dans le texte chiffré.


Limites

L'analyse fréquentielle ne peut être utilisée que pour des codes de substitutions simples (elle est par exemple inefficace contre les codes RSA et DES). Elle ne fonctionne pas pour les codes dits de transposition, qui changent la place des lettres ou des symboles dans le message. Pour savoir si l'on a affaire à un code de substitutions, on peut utiliser l'indice de coïncidence avant l'analyse fréquentielle. Cela nous permettra également d'avoir une longueur de mot clé conseillée qui pourra nous servir de base pour l'analyse statistique.

L'analyse de fréquences ne peut pas non plus être utilisée si la longueur du message est très faible, car la clé se répétera très peu et nous ne pourrons observer de particularités dans la fréquence des lettres. C'est aussi pour cette raison que l'on ne peut pas décrypter un message codé avec une longueur de clé égale à celle du message. Un même message chiffré peut correspondre alors à n'importe quel message clair, puisqu'il y a autant de clés que de clairs. Nous ne pouvons donc pas dans ce cas précis déterminer le sens général du message, c'est le principe du masque jetable qui garantit un message réellement indécryptable.

Pour se prémunir d'une cryptanalyse par analyse fréquentielle, les cryptographes avaient inventé plusieurs parades utilisées dans les algorithmes de chiffrements. On peut utiliser un chiffre qui attribue plusieurs symboles pour une seule lettre, en fonction de sa fréquence (Par exemple, on utilisera 4 ou 5 symboles pour le E mais un seul pour le K). On dit alors que l'on utilise un code homophonique.

On peut également utiliser le surchiffrement, qui consiste à recoder le texte chiffré par un autre type de chiffrement pour ne pas permettre de faire des hypothèses sur les lettres les plus fréquentes. Pour une combinaison de chiffrements bien choisie, un texte surchiffré sera donc plus difficile à déchiffrer.

L'analyse fréquentielle en littérature

Message codé de la fiction des Hommes dansants.

L'analyse fréquentielle est une technique de cryptanalyse fréquemment relatée dans les fictions. On la retrouve par exemple dans Le scarabée d'or d'Edgar Allan Poe ou dans Les Hommes dansants, une aventure de Sherlock Holmes écrite par Arthur Conan Doyle. Dans cette dernière énigme, les messages étaient alors codés avec différents symboles, en forme de personnages dansants.

Bibliographie

  • Simon Singh, Histoire des codes secrets, Edition J.C. Lattès, 1999

Voir aussi

Articles connexes

Liens externes


  • Portail de la cryptologie Portail de la cryptologie
Ce document provient de « Analyse fr%C3%A9quentielle ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Analyse Fréquentielle de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Analyse frequentielle — Analyse fréquentielle L analyse fréquentielle, ou analyse de fréquences, est une méthode de cryptanalyse découverte par Al Kindi au IXe siècle. Elle consiste à examiner la fréquence des lettres employées dans un message chiffré. Cette… …   Wikipédia en Français

  • Analyse fréquentielle — L’analyse fréquentielle, ou analyse de fréquences, est une méthode de cryptanalyse découverte par Al Kindi au IXe siècle. Elle consiste à examiner la fréquence des lettres employées dans un message chiffré. Cette méthode est fréquemment… …   Wikipédia en Français

  • Réponse fréquentielle — Réponse en fréquence Réponse en fréquence d un filtre passe bas du premier ordre avec une atténuation de 6 dB par octave ou 20 dB par décade. La réponse en fréquence est la mesure de la réponse de tout système (mécanique, électrique, électronique …   Wikipédia en Français

  • Chiffre De César — Chiffrement par décalage Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par… …   Wikipédia en Français

  • Chiffre de Cesar — Chiffrement par décalage Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par… …   Wikipédia en Français

  • Chiffre de César — Chiffrement par décalage Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par… …   Wikipédia en Français

  • Chiffre de césar — Chiffrement par décalage Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par… …   Wikipédia en Français

  • Chiffrement par décalage — Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par décalage, aussi connu comme… …   Wikipédia en Français

  • Chiffrier de César — Chiffrement par décalage Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par… …   Wikipédia en Français

  • Code de César — Chiffrement par décalage Le chiffre de César fonctionne par décalage des lettres de l alphabet. Par exemple dans l image ci dessus, il y a une distance de 3 caractères, donc B devient E dans le texte codé. En cryptographie, le chiffrement par… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”