Incomplétude

Incomplétude

Complétude

Page d'aide sur l'homonymie Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.

Wiktprintable without text.svg

Voir « complétude » sur le Wiktionnaire.

On parle de complétude en mathématiques dans des sens très différents. On dit d'un objet mathématique qu'il est complet pour exprimer que rien ne peut lui être ajouté, en un sens qu'il faut préciser dans chaque contexte. Dans le cas contraire, on parle d'incomplétude, surtout dans le contexte de la logique mathématique.

  • Un espace mesurable est complet quand tout sous-ensemble d'un ensemble de mesure nulle est mesurable, voir mesure.
  • En logique mathématique un jeu de règles ou d'axiomes est complet quand il formalise entièrement la sémantique attendue. Cela peut se préciser de façons très différentes. On a les deux notions de complétude suivantes pour la sémantique de Tarski.
    • Un système de déduction pour une logique donnée (calcul propositionnel, ou calcul des prédicats en logique classique mais aussi en logique intuitionniste ...), est complet quand il démontre les formules valides dans tous les modèles de cette logique. Plus précisément, on dit qu'une formule se déduit sémantiquement d'une théorie quand dans tout modèle de la théorie, pour toute interprétation de ses variables libres, la formule est valide. Un système de déduction est correct, fidèle ou adéquat quand toute déduction est valide sémantiquement. Il est complet quand toutes les déductions sémantiques peuvent se dériver dans le système. On parle de théorème de complétude quand il existe un système de déduction fidèle qui est complet (le système de déduction doit être raisonnable, c’est-à-dire que l'ensemble des preuves dans le système doit être récursif).
    • Une théorie axiomatique est complète quand tout énoncé du langage de la théorie est déterminé par déduction dans la théorie : il est soit démontrable, soit de négation démontrable. Cette notion est étroitement liée à celle de théorie décidable mais ne se confond pas avec elle. Le premier théorème d'incomplétude de Gödel énonce que, sous des hypothèses raisonnables, aucune théorie arithmétique cohérente n'est complète. Il a pour conséquence qu'il n'y a pas système de déduction raisonnable qui capture entièrement la sémantique attendue, à savoir la vérité dans un modèle, celui des entiers naturels (le modèle standard de l'arithmétique).
  • En théorie des graphes, un graphe (ou un sous-graphe) non orienté est complet quand toute paire de sommets est reliée par une arête.
Ce document provient de « Compl%C3%A9tude ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Incomplétude de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • incomplétude — [ ɛ̃kɔ̃pletyd ] n. f. • 1903; de incomplet 1 ♦ Psychol. Sentiment d incomplétude : sentiment d inachevé, d insuffisant que certains malades éprouvent à propos de leurs pensées, de leurs actes, de leurs émotions. ⇒ psychasthénie. 2 ♦ (1969; de in… …   Encyclopédie Universelle

  • incompletude — s. f. Qualidade do que é ou está incompleto.   ‣ Etimologia: incompleto + ude …   Dicionário da Língua Portuguesa

  • Theoreme d'incompletude de Godel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorème d'incomplétude — de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les… …   Wikipédia en Français

  • Théorème d'incomplétude de Godel — Théorème d incomplétude de Gödel Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und… …   Wikipédia en Français

  • Théorème d'incomplétude de Gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les propositions …   Wikipédia en Français

  • Théorème d'incomplétude de gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (Sur les propositions …   Wikipédia en Français

  • Théorèmes d'incomplétude de Gödel — Les théorèmes d incomplétude de Gödel sont deux théorèmes célèbres de logique mathématique, démontrés par Kurt Gödel en 1931 dans son article Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme (en) « Sur… …   Wikipédia en Français

  • Théorème d'incomplétude de Tarski — Théorème de Tarski Le théorème de Tarski, ou théorème de non définissabilité de Tarski, peut s énoncer informellement ainsi : on ne peut définir dans le langage de l arithmétique la vérité des énoncés de ce langage. Définir un ensemble de… …   Wikipédia en Français

  • Théorème d’incomplétude de Tarski — Théorème de Tarski Le théorème de Tarski, ou théorème de non définissabilité de Tarski, peut s énoncer informellement ainsi : on ne peut définir dans le langage de l arithmétique la vérité des énoncés de ce langage. Définir un ensemble de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”