- Horloge Atomique
-
Horloge atomique
Une horloge atomique est une horloge qui utilise la pérennité et l'immuabilité de la fréquence du rayonnement électromagnétique émis par un électron lors du passage d'un niveau d'énergie à un autre pour assurer l'exactitude et la stabilité du signal oscillant qu'elle produit. Un de leurs principaux usages est le maintien du temps atomique international (TAI) et la distribution du Temps universel coordonné (UTC) qui sont les échelles de temps de référence.
Sommaire
Historique
En 1948, H. Lyon[1] a créé la première horloge atomique en utilisant comme référence une raie d'absorption de l'ammoniac située dans le domaine spectral à 24 GHz sur laquelle étaient asservies les oscillations d'un oscillateur à quartz. Cependant, l'effet Doppler très présent avait tendance à décaler la raie d'absorption et, la précision de cette horloge n'étant pas meilleure que celle du simple oscillateur à quartz, l'idée fut dans un premier temps abandonnée.
C'est en 1955 que Essen et Parry, grâce aux travaux de N. Ramsey sur une méthode permettant l'amélioration de l'interaction onde électromagnétique-atomes en 1950, réalisèrent l'asservissement d'un oscillateur à quartz par la résonance du césium : la première horloge atomique à jet de césium était née.
Zacharias, élève de Rabi Thomas Hick, développa des prototypes industriels d'horloges à jet de césium qui furent commercialisés à partir de 1956 et, suite à cela, il proposa une nouvelle méthode utilisant des atomes froids qui ne put voir le jour qu'en 1967 en raison de contraintes techniques.
Dès lors, l'inexactitude des étalons de fréquence était réduite à 10-12 en valeur relative. C'est à cette époque qu'il fut décidé de définir le temps par rapport à une référence atomique : ce fut la naissance du Temps atomique international. La seconde sera définie alors comme étant la durée de 9 192 631 770 périodes de la radiation correspondant à la transition entre les deux niveaux hyperfins de l'état fondamental de l'atome de césium (césium naturel : isotope stable 133Cs).
Principe de fonctionnement
Le principe général des horloges atomiques est d'asservir un oscillateur à quartz sur le rayonnement émis lors d'une transition atomique entre deux niveaux d'une structure hyperfine.
Introduction aux processus de transitions entre niveaux atomiques
- Processus énergétiques atomiques
Un atome passant d'un état d'énergie excité E2 à une autre état d'énergie E1 plus faible (avec E2 > E1 et ΔE = E2 − E1) émet un photon de fréquence ν telle que . C'est le processus d'émission spontanée. À l'inverse, un atome dans un état d'énergie E1 passera à un état excité d'énergie E2 par l'absorption d'un photon de fréquence ν et d'énergie ΔE = E2 − E1 = hν, h étant la constante de Planck telle que h = 6.62.10 − 34J.s. On connaît aussi le principe d'émission stimulée consistant pour un atome à passer d'un état d'énergie excité vers un état fondamental après la rencontre d'un autre photon. L'énergie de l'atome sera alors dissipée par l'émission d'un autre photon qui possédera les mêmes caractéristiques que le photon initiateur. Il existe également une probabilité non nulle pour qu'un atome se trouvant dans un état excité d'énergie E2 redescende dans un état d'énergie plus stable et plus faible par un processus de désexcitation non radiative, c’est-à-dire sans émettre de photon. Le système devant alors satisfaire à la relation de conservation de l'énergie, il en résultera soit un échauffement de l'atome soit un transfert de quantité de mouvement.
Ces processus atomiques élémentaires, dont la théorie a été développée en partie par Albert Einstein, vont être à la base de toute l'interaction permettant d'élaborer un étalon atomique de mesure du temps.
- Notion de structure fine et hyperfine
L'observation à haute résolution des raies lumineuses d'un spectre d'émission ou d'absorption met en évidence la présence d'une superposition de plusieurs composantes au sein d'une même raie.
Une raie principale est donnée par le nombre quantique principal n caractérisant les états propres des fonctions d'onde de ses orbitales électroniques. Dans un même niveau quantique principal, la théorie va donner pour un même nombre quantique n une série de sous-niveaux correspondant à des états quantiques dégénérés qui vont être créés par les diverses interactions physiques au sein de l'atome (interaction spin-orbite, effets de volume, effets de masse...). Ces sous-niveaux sont en fait la cause de la structure composée de la raie principale observée dans le spectre. On parle alors de structure fine voire hyperfine pour certains atomes dans des conditions particulières de champ magnétique.
Exemple de l'horloge atomique à jet de Césium 133
Un système physique, ici une enceinte chauffée contenant du césium, permet de créer un jet d'atomes. Dans ce jet seuls les atomes correspondant à l'état de départ désiré, ici E1, sont conservés; la sélection se fait par déflexion par un champ magnétique. Un oscillateur à quartz produit un signal à 10 MHz qui est multiplié pour piloter un générateur micro-ondes à une fréquence ν' aussi voisine de ν que possible; ce signal est injecté dans une cavité résonnante, dite cavité de Ramsey. Le jet d'atomes dans l'état E1 passe dans la cavité : plus la fréquence ν' sera proche de ν plus grand sera le nombre d'atomes qui, par absorption de l'onde, subiront la transition à l'état E2. À la sortie, le jet atomique subit une seconde déflexion magnétique qui sépare les atomes dans l'état E2 de ceux dans l'état E1. Un détecteur, placé dans la trajectoire des atomes dans l'état E2 produit un signal proportionnel au nombre de ces atomes. Plus ν' est proche de ν, plus le nombre d'atomes E2 compté en sortie est grand. Un système d'asservissement ajuste en permanence la fréquence de l'oscillateur à quartz pour maximiser le nombre d'atomes dans l'état E2, et donc conserver la fréquence de l'oscillateur proche de la fréquence optimale.
La fréquence de l'oscillateur est ainsi asservie à la fréquence de la transition atomique. Dans le cas du césium, la fréquence ν est 9 192 631 770 Hz. Cette valeur est exacte car elle définit la seconde, et donc le Hertz.
Le comptage du temps est ensuite assuré par une division des oscillations de l'oscillateur à quartz, associé à un circuit électronique affichant par exemple l'heure comme dans une montre à quartz. Les oscillations peuvent aussi être utilisées directement pour piloter des dispositifs ou équipements nécessitant une fréquence de fonctionnement stable.
Applications
Le Temps atomique international est la référence mondiale fondée sur la définition de la seconde atomique, calculée au Bureau International des Poids et Mesures à Sèvres, en faisant la moyenne de plus de 300 horloges atomiques [349, décembre 2008] à travers le monde. En France, le temps légal repose sur les lectures d'une vingtaine d'horloges atomiques.
Outre servir à définir une référence chronologique universelle, les horloges atomiques sont également employées dans les technologies de positionnement géographique. Les satellites de la constellation GPS, du système GLONASS ou ceux du programme Galileo, embarquent chacun plusieurs horloges atomiques, jusqu'à 4 pour les satellites GPS.
Le 28 décembre 2005, une horloge atomique a été placée sur l'orbite prévue, à 23 000 km d'altitude, par l'ESA et le GJU, à bord du premier de deux satellites expérimentaux nommé GIOVE-A (GSTB-2A), destiné au système européen de navigation par satellites Galileo, depuis une fusée russe Soyouz lancée du cosmodrome de Baïkonour au Kazakhstan.
Les horloges atomiques sont aussi utilisées dans les réseaux de télécommunications pour fournir un signal de référence aux oscillateurs internes des équipements, afin d'assurer une qualité de transmission des services en accord avec les normes internationales. On utilise soit les signaux directement produits par des horloges atomiques soit les signaux élaborés à partir des émissions des satellites de la constellation GPS qui ont la stabilité des horloges atomiques embarquées.
Annexes
Notes et références
Articles connexes
Liens et documents externes
- Portail de la physique
Catégorie : Horloge
Wikimedia Foundation. 2010.