Groupe abelien

Groupe abelien

Groupe abélien

En algèbre générale, un groupe abélien, ou groupe commutatif, est un groupe (\mathcal G, \star) dont la loi de composition interne \star est commutative, c’est-à-dire que pour tous les éléments a, b \in \mathcal G, on a a \star b = b \star a.

Les groupes abéliens portent le nom de Niels Henrik Abel.

Sommaire

Notations habituelles

Il y a deux notations courantes pour les groupes abéliens : la notation additive et la notation multiplicative.

Convention Opération Identité Puissance Inverse Somme directe/produit
Addition x + y 0 nx x GH
Multiplication x * y ou xy e ou 1 xn x −1 G × H

La notation multiplicative est la notation habituelle pour les groupes, la notation additive étant préférée pour les modules. La notation additive est également courante lorsque les groupes abéliens sont étudiés à part des autres groupes.

Exemples

Des exemples de groupes abéliens incluent les groupes monogènes tels que l'ensemble des entiers (\mathbb Z, +) et l'ensemble des entiers modulo n (\mathbb Z/ n\mathbb Z, +).

L'ensemble des nombres réels, \mathbb R, forme un groupe abélien avec l'addition ; de même que l'ensemble des nombres réels non nuls,\mathbb R^*, pour la multiplication. De la même façon tout corps \mathbb K renferme deux groupes, (\mathbb K, +) muni de l'addition sur ce corps et (\mathbb K^*, .) privé de l'élément absorbant muni de la multiplication sur ce corps. Un autre exemple important est celui du groupe quotient \mathbb Q/\mathbb Z.

Si n est un entier naturel et x est un élément d'un groupe abélien \mathcal G, alors nx peut être défini comme x + x + ... + x (n sommes) et (-n)x = -(nx). De cette façon, \mathcal G devient un module sur l'anneau \mathbb Z des entiers. En fait, les modules sur \mathbb Z peuvent être identifiés avec les groupes abéliens.

Les théorèmes sur les groupes abéliens peuvent souvent être généralisés en théorèmes sur les modules sur un anneau principal.

Un exemple est la classification des groupes abéliens de type fini.

Propriétés

Tout sous-groupe d'un groupe abélien est un sous-groupe distingué, et ainsi les groupes quotients peuvent être formés librement.

Les sous-groupes, les groupes quotients, les produits et les sommes directes de groupes abéliens, sont aussi abéliens.

Si f, g : GH sont deux homomorphismes entre groupes abéliens, alors leur somme f+g, définie par (f+g)(x) = f(x) + g(x), est aussi un homomorphisme. (ce qui n'est pas vrai si H n'est pas un groupe abélien). L'ensemble Hom(G, H) de tous les homomorphismes de groupes de G vers H devient ainsi lui-même un groupe abélien.

Les groupes abéliens, conjointement avec les homomorphismes, forment une catégorie, prototype d'une catégorie abélienne.

Rang

Quelque peu apparenté à la dimension d'un espace vectoriel, tout groupe abélien a un rang. Le rang est défini comme le cardinal du plus grand ensemble d'éléments linéairement indépendants du groupe. Les ensembles des nombres entiers et des nombres rationnels respectivement ont un rang égal à un. Alors que les rangs des groupes abéliens finis sont bien compris, les rangs des groupes infinis peuvent être extrêmement complexes et encore beaucoup de questions en suspens subsistent, souvent intimement liées à des questions de la théorie des ensembles.

Topologie

Beaucoup de grands groupes abéliens portent une topologie naturelle, les transformant en des groupes topologiques.

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Groupe ab%C3%A9lien ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Groupe abelien de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Groupe Abélien — En algèbre générale, un groupe abélien, ou groupe commutatif, est un groupe dont la loi de composition interne est commutative, c’est à dire que pour tous les éléments , on a . Les groupes abéliens portent le nom de Niels Henrik Abel …   Wikipédia en Français

  • Groupe abélien — Un groupe abélien (du nom de Niels Abel), ou groupe commutatif, est un groupe dont la loi interne est commutative. Vu autrement, un groupe commutatif peut aussi être défini comme un module sur l anneau commutatif des entiers relatifs ; l… …   Wikipédia en Français

  • Groupe Abélien De Type Fini — Les groupes abéliens de type fini forment une sous catégorie particulière d objets mathématiques de la catégorie des groupes abstraits. Ce sont les groupes qui sont, d une part, abéliens, c’est à dire ceux dont la loi de composition interne est… …   Wikipédia en Français

  • Groupe abelien de type fini — Groupe abélien de type fini Les groupes abéliens de type fini forment une sous catégorie particulière d objets mathématiques de la catégorie des groupes abstraits. Ce sont les groupes qui sont, d une part, abéliens, c’est à dire ceux dont la loi… …   Wikipédia en Français

  • Groupe Abélien Fini — Leopold Kronecker (1823 1891) En mathématiques et plus précisément en algèbre, les groupes abéliens finis correspondent à une sous catégorie de la catégorie des groupes. Un groupe abélien fini est un groupe commutatif dont le cardinal est fini.… …   Wikipédia en Français

  • Groupe abelien fini — Groupe abélien fini Leopold Kronecker (1823 1891) En mathématiques et plus précisément en algèbre, les groupes abéliens finis correspondent à une sous catégorie de la catégorie des groupes. Un groupe abélien fini est un groupe commutatif dont le… …   Wikipédia en Français

  • Groupe abélien libre — En mathématiques, un groupe abélien libre est un groupe abélien qui possède une base, c est à dire une partie B telle que tout élément du groupe s écrive de façon unique comme combinaison linéaire à coefficients entiers d un nombre fini d… …   Wikipédia en Français

  • Groupe abélien fini — Leopold Kronecker (1823 1891) En mathématiques et plus précisément en algèbre, les groupes abéliens finis correspondent à une sous catégorie de la catégorie des groupes. Un groupe abélien fini est un groupe commutatif dont l ensemble sous jacent… …   Wikipédia en Français

  • Groupe abélien de type fini — En mathématiques, un groupe abélien de type fini est un groupe abélien qui possède une partie génératrice finie. Les produits, les quotients, mais aussi les sous groupes des groupes abéliens de type fini sont eux mêmes de type fini. Un théorème… …   Wikipédia en Français

  • Analyse Harmonique Sur Un Groupe Abélien Fini — En mathématiques, l analyse harmonique sur un groupe abélien fini est un cas particulier d analyse harmonique correspondant au cas où le groupe est abélien et fini. L analyse harmonique permet de définir la notion de transformée de Fourier ou le… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”