Effet Cěrenkov

Effet Cěrenkov

Effet Vavilov-Čerenkov

Cet article fait partie de la série
Mécanique quantique
 \hat H | \psi\rangle = i\hbar\frac{{\rm d}}{{\rm d}t}|\psi\rangle
Postulats de la mécanique quantique

Histoire de la mécanique quantique

L'effet Vavilov-Čerenkov est un phénomène similaire à une onde de choc, produisant un flash de lumière qui a lieu lorsqu'une particule chargée se déplace dans un milieu avec une vitesse supérieure à la vitesse de la lumière dans ce milieu.

C'est cet effet qui provoque la luminosité bleue de l'eau entourant le cœur d'un réacteur nucléaire.

Sommaire

Terminologie

L'effet Vavilov-Čerenkov est ainsi nommé d'après les physiciens russes Sergey Vavilov et Pavel Čerenkov. Il est souvent nommé simplement effet Čerenkov, les travaux ayant été publiés sous le nom de Pavel Čerenkov uniquement, et parfois orthographié Tcherenkov (« à la française ») ou Cherenkov (en anglais)). On rencontre également plus rarement l'appellation effet Mallet-Čerenkov ou Čerenkov-Mallet, particulièrement en radioprotection en France, le français Lucien Mallet étant le premier à avoir travaillé sur le sujet — et contraint d'abandonner ses travaux faute de financement.


Explication du phénomène

Radiation Tcherenkov provenant de l'intérieur du cœur du réacteur nucléaire Triga

Dans un milieu matériel, la lumière se déplace à une vitesse c1 inférieure à c[1] .

Soit un milieu matériel transparent d'indice de réfraction n. La vitesse de la lumière dans ce milieu vaut c1=c/n. (par définition de l'indice de réfraction). Soit une particule chargée qui se déplace, dans le milieu matériel considéré, à une vitesse v supérieure à c1. Cela est tout à fait envisageable pour des particules très légères et très énergétiques. La particule chargée interagit tout au long de sa trajectoire avec le milieu qu'elle traverse. En effet, elle perturbe temporairement la polarisation des couches électroniques des atomes rencontrés, ce qui provoque une émission radiative. Ainsi, chaque atome rencontré par la particule devient successivement émetteur d'un rayonnement au passage de la particule. Cette émission est donc provoquée à la vitesse v. Or l'onde émise se propage à une vitesse c1 inférieure à v. L'interférence de chacune des ondes émises par chaque atome perturbé est alors constructive. Un front d'onde cohérent apparaît sous la forme d'un cône de lumière. La fréquence de cette onde constructive correspond généralement, pour l'effet Tcherenkov dans l'eau, à celle du bleu ou de l'ultra-violet.


L’analogie entre l’effet Tcherenkov et l'onde de choc est facile à faire. Un avion se déplaçant plus vite que le son dans l’air crée une onde de choc sur laquelle toutes les ondes sonores se retrouvent. La correspondance avec l’effet Tcherenkov se fait en remplaçant l’avion assimilé à un point par une particule chargée et le son par la lumière. Le nombre de Mach fournit un schéma qui est directement applicable ici.

Historique

L’effet Tcherenkov était connu depuis les travaux de Marie Curie de 1910 montrant que l'eau soumise à une source radioactive produisait de la lumière. Jusqu'en 1926, l'explication admise était la fluorescence produite par des solutés. Mais entre 1926 et 1929, Lucien Mallet analysant plus profondément la question remarqua que le spectre lumineux produit était continu, alors que la fluorescence donne un spectre discret.

En outre, entre 1934 et 1937, Pavel Tcherenkov a prouvé que la radiation produite est indépendante de la composition du liquide, ce qui était en désaccord avec la théorie de la fluorescence.

Les recherches de Tcherenkov établissaient les propriétés générales de la radiation, mais ce sont Il'ja Frank et Igor Tamm qui décrirent cet effet de façon rigoureuse, en 1937, ce qui leur valu de partager avec Tcherenkov le prix Nobel de physique de 1958.

L’effet Tcherenkov joue un rôle capital dans la physique contemporaine. Il intervient dans la détection des particules (Observatoire de neutrinos de Sudbury, Antarctic Muon and Neutrino Detector Array, Super Kamiokande ou encore dans les accélérateurs de particules). Cette méthode est particulièrement simple et requiert très peu d’information pour pouvoir déduire la masse et la vitesse d’une particule. C’est pourquoi on la retrouve dans toutes les installations de physique subatomique.

Effet Tcherenkov dans l'espace

Les astronautes des missions Apollo s'étaient tous plaints de phosphènes lors de leurs missions. On découvrit que ces troubles visuels lumineux étaient dues à l'effet Tcherenkov de particules du vent solaire à l'intérieur du liquide oculaire des astronautes.

Dans son livre, "Sonate au clair de terre", le spationaute français Jean-Loup Chrétien indique que de tels phosphènes se produisent sur Terre, au rythme d'un ou deux par année pour une personne moyenne. Dans la station Mir, Chrétien en a vu quelques uns par jour…

Notes et références

  1. vitesse de la lumière dans le vide, c = 299 792 458 mètres par seconde

Voir aussi

Liens externes

  • Portail de la physique Portail de la physique
Ce document provient de « Effet Vavilov-%C4%8Cerenkov ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Effet Cěrenkov de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Effet Cerenkov — Effet Vavilov Čerenkov Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire d …   Wikipédia en Français

  • Effet Čerenkov — Effet Vavilov Čerenkov Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire d …   Wikipédia en Français

  • Effet Vavilov-Čerenkov — au cœur de réacteur de recherche ATR L effet Vavilov Čerenkov est un phénomène similaire à une onde de choc, produisant un flash de lumière qui a lieu lorsqu une particule chargée se déplace dans un milieu avec une vitesse supérieure à la vitesse …   Wikipédia en Français

  • Effet Cherenkov — Effet Vavilov Čerenkov Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire d …   Wikipédia en Français

  • Effet Tcherenkov — Effet Vavilov Čerenkov Cet article fait partie de la série Mécanique quantique Postulats de la mécanique quantique Histoire d …   Wikipédia en Français

  • Effet STL — Inspirés par l effet Cerenkov, de nombreux scientifiques ont expérimenté les applications du ralentissement de la vitesse de la lumière. Or selon la théorie d Einstein, matière et lumière peuvent l un et l autre plier l espace temps. Par ailleurs …   Wikipédia en Français

  • Effet — Pour les articles homonymes, voir Effet (homonymie). Sur les autres projets Wikimedia : « Effet », sur le Wiktionnaire (dictionnaire universel) Sommaire 1 Généralit …   Wikipédia en Français

  • effet — [ efɛ ] n. m. • 1430; effect XIIIe; aifait 1272; lat. effectus, de efficere « réaliser, exécuter » I ♦ 1 ♦ Ce qui est produit par une cause. ⇒ conséquence, résultat, suite. Effet immédiat. ⇒ impact. Effet indirect. ⇒ contrecoup, répercussion,… …   Encyclopédie Universelle

  • Télescope à imagerie Čerenkov atmosphérique — Un télescope à imagerie Čerenkov atmosphérique consiste en un télescope de type réflecteur optique équipé d une caméra ultra rapide capable de détecter le rayonnement Čerenkov émis par les rayons cosmiques dans l atmosphère. L entrée d un rayon… …   Wikipédia en Français

  • Pavel Čerenkov — Pavel Tcherenkov Pavel Tcherenkov Pavel Alekseyevitch Tcherenkov (russe : Павел Алексеевич Черенков), né à Nijniaïa Tchigla dans l oblast de Voronej le 28 juillet 1904 et mort à Moscou le 6 janvier 1990, est un phys …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”