Représentation d'un groupe topologique

Représentation d'un groupe topologique

En mathématiques, une représentation continue, ou représentation d'un groupe topologique est une représentation de ce groupe sur un espace vectoriel topologique qui est continue en tant qu'action.

Sommaire

Définition

Une représentation continue d'un groupe topologique G sur un espace vectoriel topologique V est un morphisme de groupes de G dans le groupe linéaire de V,

\pi:G\to GL(V),

tel que l'application de l'espace produit G × V dans V donnée par

(g,v)\rightarrow\pi(g).v

soit continue.

On dit alors que G agit (continument) sur V.

Autres notions de continuité

Toute représentation continue est, en particulier, continue séparément par rapport à chaque variable :

  • pour tout g∊G, l'application π(g) est continue ;
  • pour tout v∊V, l'application G→V, g↦π(g).v est continue.

Réciproquement, toute représentation « fortement continue », c'est-à-dire continue séparément par rapport à v et à g (V étant muni de la topologie forte) est une représentation continue, lorsque V est un espace de Banach et G un groupe localement compact.

Pour toute représentation continue sur un espace de dimension finie V, π:G→GL(V) est continue, puisque dans une base fixée de V, chacun des coefficients de la matrice de π(g) est continu par rapport à g.

Mais si V est de dimension infinie, π n'est en général pas continue. Par exemple pour la représentation unitaire (en) continue du groupe compact S1 agissant sur H=L2(S1) par translations, l'application π, à valeurs dans U(H) muni de la topologie de la norme d'opérateurs, n'est pas continue.

Glossaire

Les notions usuelles de théorie des représentations ont leur variante « continue » dans le contexte des représentations d'un groupe topologique. Par exemple :

  • une sous-représentation de (V,π) est un sous-espace vectoriel fermé de V invariant sous l'action de G ;
  • (V,π) est dite irréductible si elle n'admet aucune autre sous-représentation (au sens ci-dessus) qu'elle même et {0} (l'irréductibilité au sens usuel entraîne donc l'irréductibilité au sens des représentations continues, mais la réciproque est fausse) ;
  • un opérateur d'entrelacement (ou morphisme), de (V,π) vers une autre représentation continue (W,ρ) de G, est une application linéaire continue φ:V→W telle que pour tout g∊G, φ∘π(g)=ρ(g)∘φ ;
  • deux représentations continues sont équivalentes si elles sont isomorphes, c'est-à-dire entrelacées par un isomorphisme φ bicontinu (ce qui entraîne qu'elles sont équivalentes au sens usuel mais, là encore, la réciproque est fausse).

Sources


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Représentation d'un groupe topologique de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Groupe Topologique Compact — Un groupe topologique compact ou groupe compact est un groupe topologique G tel que l espace topologique sous jacent soit compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l étude. Ces groupes comprennent… …   Wikipédia en Français

  • Groupe topologique compact — Un groupe topologique compact ou groupe compact est un groupe topologique G tel que l espace topologique sous jacent soit compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité simplifie l étude. Ces groupes comprennent… …   Wikipédia en Français

  • Groupe topologique — En mathématiques, un groupe topologique est un groupe muni d une topologie compatible avec la structure de groupe, c est à dire lorsque la loi de composition interne du groupe et le passage à l inverse sont deux applications continues. L étude… …   Wikipédia en Français

  • Caractere d'un groupe topologique compact — Caractère d un groupe topologique compact Dans l étude des représentations d un groupe topologique compact, les caractères sont des fonctions centrales (id est constantes sur les classes de conjugaison) associées aux représentations et permettant …   Wikipédia en Français

  • Caractère D'un Groupe Topologique Compact — Dans l étude des représentations d un groupe topologique compact, les caractères sont des fonctions centrales (id est constantes sur les classes de conjugaison) associées aux représentations et permettant de caractériser les classes d équivalence …   Wikipédia en Français

  • Caractère d'un groupe topologique compact — Dans l étude des représentations d un groupe topologique compact, les caractères sont des fonctions centrales (id est constantes sur les classes de conjugaison) associées aux représentations et permettant de caractériser les classes d équivalence …   Wikipédia en Français

  • Groupe compact — En mathématiques, et plus particulièrement en analyse harmonique abstraite, un groupe compact est un groupe topologique dont l espace topologique sous jacent est compact. Les groupes compacts sont des groupes unimodulaires, dont la compacité… …   Wikipédia en Français

  • Representation des groupes — Représentation de groupe L idée générale de la théorie des représentations est d essayer d étudier un groupe G en le faisant agir sur un espace vectoriel V de manière linéaire : on essaie ainsi de voir G comme un groupe de matrices (d où le… …   Wikipédia en Français

  • Représentation des groupes — Représentation de groupe L idée générale de la théorie des représentations est d essayer d étudier un groupe G en le faisant agir sur un espace vectoriel V de manière linéaire : on essaie ainsi de voir G comme un groupe de matrices (d où le… …   Wikipédia en Français

  • Représentation linéaire — Représentation de groupe L idée générale de la théorie des représentations est d essayer d étudier un groupe G en le faisant agir sur un espace vectoriel V de manière linéaire : on essaie ainsi de voir G comme un groupe de matrices (d où le… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”