Transformation d'Abel

Transformation d'Abel

Sommation par parties

La sommation par parties est l'équivalent pour les séries de l'intégration par parties. On l'appelle également transformation d'Abel ou sommation d'Abel.

Sommaire

Méthode

Soient deux suites (a_n) \, et (b_n) \,, avec n \in \N. On considère la série suivante :
S_N = \sum_{n=0}^N a_n b_n

Si on pose B_n = \sum_{k=0}^n b_k ,
alors pour tout n>0, b_n = B_n - B_{n-1} \,

S_N = a_0 b_0 + \sum_{n=1}^N a_n (B_n - B_{n-1})
S_N = a_0 b_0 - a_1 B_0 + a_N B_N + \sum_{n=1}^{N-1} B_n (a_n - a_{n+1})
On obtient finalement l'égalité suivante : S_N = a_N B_N - \sum_{n=0}^{N-1} B_n (a_{n+1} - a_n)

Cette opération, qui transforme l'expression de la série à étudier, est utile pour prouver certains critères de convergence de S_N \, .

Similitude avec l'intégration par parties

La formule de l'intégration s'écrit : \int_a^b f(x) g'(x)\,dx = \left[ f(x) g(x) \right]_{a}^{b} - \int_a^b  f'(x) g(x)\,dx
Si on laisse de côté les conditions aux limites, on s'aperçoit que l'intégration par parties consiste à intégrer une des deux fonctions présentes dans l'intégrale initiale (g' \, devient g \,) et à dériver l'autre (f \, devient f' \,).

La sommation par parties consiste en une opération analogue dans le domaine discret, puisque l'une des deux séries est sommée (b_n \, devient B_n \,) et l'autre est différenciée (a_n \, devient a_{n+1} - a_n \,).

On peut considérer la formule sommatoire d'Abel comme une généralisation de ces deux formules.

Applications

On se place par la suite dans le cas a_N b_N \rightarrow 0, car sinon on sait que (S_N)\, est grossièrement divergente.

Si (B_n) \, est bornée par un réel M et que  \sum_{n\ge0}(a_{n+1} - a_n) est une série absolument convergente, alors la série (S_N)\, est convergente.

|S_N| \le |a_N B_N| + \sum_{n=0}^{N-1} |B_n| |a_{n+1}-a_n|

La somme de la série vérifie par ailleurs l'inégalité :  S = \sum_{n=0}^\infty a_n b_n \le M \sum_{n=0}^\infty |a_{n+1}-a_n|

Exemples

  1. a_n = \frac{1}{n+1} et b_n = (-1)^n \,
    |B_n| \le 1 et |a_{n+1}-a_n| = \frac{1}{(n+1)(n+2)} \le \frac{1}{n^2}
    On sait que la série  \sum_0^\infty \frac{1}{n^2} converge (voir fonction zêta de Riemann), donc les conditions exposées ci-dessus sont toutes réunies.
     S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + ... converge.
    NB: Cet exemple peut également être prouvé grâce au critère de convergence des séries alternées.
  2. a_n = \frac{1}{n} et b_n = \sin(n) \,
    (Nous ne définissons ici la somme qu'à partir du rang n=1 au lieu de n=0, mais cela n'affecte en rien l'existence de la limite de la série.)
    Comme précédemment  \sum_{n=1}^\infty (\frac{1}{n+1} - \frac{1}{n}) converge absolument, et \sum_{k=1}^n \sin(k) est bornée d'après l'expression du noyau de Dirichlet.
    Par conséquent \sum_{n=1}^\infty \frac{\sin(n)}{n} converge.
  3. La sommation par parties sert dans la preuve du théorème d'Abel.
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Sommation par parties ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Transformation d'Abel de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Abel-Transformation — Die Abelsche Integralgleichung ist eine spezielle Volterrasche Integralgleichung 1. Art. Sie hat die Form: . wobei f (h) vorgegeben ist und u (y) die gesuchte Funktion ist. Die Volterrasche Integralgleichung 1. Art ist allgemeiner als definiert… …   Deutsch Wikipedia

  • Abel transform — In mathematics, the Abel transform, named for Niels Henrik Abel, is an integral transform often used in the analysis of spherically symmetric or axially symmetric functions. The Abel transform of a function f ( r ) is given by::F(y)=2int y^infty… …   Wikipedia

  • Théorème d'Abel — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Il existe plusieurs théorèmes d Abel : Le théorème d Abel concernant les équations algébriques. Le théorème d Abel concernant les séries entières. Le …   Wikipédia en Français

  • Theoreme d'Abel (analyse) — Théorème d Abel (analyse) Pour les articles homonymes, voir Théorème d Abel. Le théorème d Abel, ou théorème de convergence radiale d Abel, est un outil central de l étude des séries entières. Théorème   Soit …   Wikipédia en Français

  • Théorème d'Abel (Analyse) — Pour les articles homonymes, voir Théorème d Abel. Le théorème d Abel, ou théorème de convergence radiale d Abel, est un outil central de l étude des séries entières. Théorème   Soit …   Wikipédia en Français

  • Théorème d'abel (analyse) — Pour les articles homonymes, voir Théorème d Abel. Le théorème d Abel, ou théorème de convergence radiale d Abel, est un outil central de l étude des séries entières. Théorème   Soit …   Wikipédia en Français

  • Lemme d'Abel — Sommation par parties La sommation par parties est l équivalent pour les séries de l intégration par parties. On l appelle également transformation d Abel ou sommation d Abel. Sommaire 1 Méthode 2 Similitude avec l intégration par parties 3 …   Wikipédia en Français

  • Sommation d'Abel — Sommation par parties La sommation par parties est l équivalent pour les séries de l intégration par parties. On l appelle également transformation d Abel ou sommation d Abel. Sommaire 1 Méthode 2 Similitude avec l intégration par parties 3 …   Wikipédia en Français

  • Niels Henrik Abel — Born 5 August 1802( …   Wikipedia

  • Niels Henrik Abel — Niels Henrik Abel. Niels Henrik Abel (* 5. August 1802 auf der Insel Finnøy, Ryfylke, Norwegen; † 6. April 1829 in Froland, Aust Agder, Norwegen) war ein norwegischer Mathematiker …   Deutsch Wikipedia

Share the article and excerpts

Direct link
https://fr-academic.com/dic.nsf/frwiki/1655939 Do a right-click on the link above
and select “Copy Link”