Théorème de Fejér

Théorème de Fejér

En mathématiques, le théorème de Fejér est un des principaux résultats de la théorie des séries de Fourier. Il donne des propriétés de convergence très générales pour la série de Fourier, dès lors qu'on utilise le procédé de sommation de Cesàro. Il a été démontré par le mathématicien Lipót Fejér en 1900[1].

Énoncé

Soit f une fonction localement intégrable et -périodique. On note

S_n(f)(x)=\sum_{k=-n}^n c_k(f) e^{ikx}\qquad \hbox{avec} \qquad c_k(f)=\frac1{2\pi}\int_{-\pi}^\pi f(t)e^{-ikt}dt

le terme d'ordre n de sa série de Fourier, et

\sigma_N(f)(x)=\frac1{N+1}\sum_{n=0}^{N} S_n(f)(x)

les moyennes de Cesàro successives des termes de la série de Fourier. On a alors les énoncés suivants :

  • théorème de Fejér, version uniforme
Si f est continue, la série de fonctions σN(f) converge uniformément vers la fonction f, avec en outre, pour tout N,
\|\sigma_N(f)\|_\infty\leq \|f\|_\infty
  • théorème de Fejér, version Lp (1\leq p <+\infty), aussi appelé théorème de Fejér-Lebesgue
Si f appartient à l'espace Lp, la série de fonctions σN(f) converge vers la fonction f au sens de la norme \|\;\|_p, avec en outre, pour tout N,
\|\sigma_N(f)\|_p\leq \|f\|_p

Applications

De très nombreux résultats concernant les séries de Fourier peuvent être obtenus comme conséquences du théorème de Fejér. dans les propositions suivantes, toutes les fonctions considérées sont -périodiques.

  • L'application qui à une fonction intégrable associe ses coefficients de Fourier est injective.
L'injectivité est à comprendre dans l'espace L1, c'est-à-dire que deux fonctions ayant mêmes coefficients de Fourier sont égales presque partout. Dans le cas de deux fonctions continues, elles sont même égales.

De même le théorème de Fejér-Lebesgue apporte la preuve de la densité de l'espace des polynômes trigonométriques dans les différents espaces Lp.

  • Si f est continue et si sa série de Fourier converge en un point x, alors elle converge nécessairement vers f(x).
Ceci est à comparer au comportement de la série de Taylor d'une fonction, qui peut très bien, elle, converger vers une autre valeur que la valeur de la fonction.

Notes et références

  1. Lipót Fejér, Sur les fonctions intégrables et bornées, C.R. Acad. Sci. Paris, 10 décembre 1900

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème de Fejér de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Théorème de fejér — En mathématiques, le théorème de Fejér est un des principaux résultats de la théorie des séries de Fourier. Il donne des propriétés de convergence très générales pour la série de Fourier, dès lors qu on utilise le procédé de sommation de Cesàro.… …   Wikipédia en Français

  • Théorème de Fejér-Lebesgue — Théorème de Fejér En mathématiques, le théorème de Fejér est un des principaux résultats de la théorie des séries de Fourier. Il donne des propriétés de convergence très générales pour la série de Fourier, dès lors qu on utilise le procédé de… …   Wikipédia en Français

  • Theoreme de Stone-Weierstrass — Théorème de Stone Weierstrass Le théorème d approximation de Weierstrass affirme que toute fonction continue définie sur un compact peut être approchée aussi près que l on veut par une fonction polynomiale. Parce que les fonctions polynômes sont… …   Wikipédia en Français

  • Theoreme de Weierstrass — Théorème de Stone Weierstrass Le théorème d approximation de Weierstrass affirme que toute fonction continue définie sur un compact peut être approchée aussi près que l on veut par une fonction polynomiale. Parce que les fonctions polynômes sont… …   Wikipédia en Français

  • Théorème de Weierstraß — Théorème de Stone Weierstrass Le théorème d approximation de Weierstrass affirme que toute fonction continue définie sur un compact peut être approchée aussi près que l on veut par une fonction polynomiale. Parce que les fonctions polynômes sont… …   Wikipédia en Français

  • Théorème de stone-weierstrass — Le théorème d approximation de Weierstrass affirme que toute fonction continue définie sur un compact peut être approchée aussi près que l on veut par une fonction polynomiale. Parce que les fonctions polynômes sont les fonctions les plus simples …   Wikipédia en Français

  • Théorème de weierstrass — Théorème de Stone Weierstrass Le théorème d approximation de Weierstrass affirme que toute fonction continue définie sur un compact peut être approchée aussi près que l on veut par une fonction polynomiale. Parce que les fonctions polynômes sont… …   Wikipédia en Français

  • Théorème de Cesàro (analyse) — Lemme de Cesàro En analyse réelle ou complexe, la moyenne de Cesàro d une suite (an) est la suite obtenue en effectuant la moyenne arithmétique des n premiers termes de la suite. Le nom de Cesàro provient du mathématicien italien Ernesto Cesàro.… …   Wikipédia en Français

  • Théorème de Césaro (analyse) — Lemme de Cesàro En analyse réelle ou complexe, la moyenne de Cesàro d une suite (an) est la suite obtenue en effectuant la moyenne arithmétique des n premiers termes de la suite. Le nom de Cesàro provient du mathématicien italien Ernesto Cesàro.… …   Wikipédia en Français

  • Théorème de cesàro (analyse) — Lemme de Cesàro En analyse réelle ou complexe, la moyenne de Cesàro d une suite (an) est la suite obtenue en effectuant la moyenne arithmétique des n premiers termes de la suite. Le nom de Cesàro provient du mathématicien italien Ernesto Cesàro.… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”