Sphère de Gauss

Sphère de Gauss

Sphère de Riemann

Page d'aide sur l'homonymie Pour les articles homonymes, voir Sphère (homonymie).

En mathématiques, la sphère de Riemann est une manière de prolonger le plan des nombres complexes avec un point additionnel à l'infini, de manière à ce que certaines expressions mathématiques deviennent convergentes et élégantes, du moins dans certains contextes. Elle est baptisée du nom du mathématicien du XIXe siècle Bernhard Riemann. Ce plan s'appelle également la droite projective complexe, dénoté \mathbb P^1(\mathbb C).

Sommaire

Introduction

D'un point de vue purement algébrique, les nombres complexes avec un élément supplémentaire à l'infini constituent un ensemble de nombres connu sous le nom de nombres complexes prolongés. L'arithmétique de cet ensemble n'obéit pas à toutes les règles habituelles de l'algèbre ; notamment les nombres complexes prolongés ne forment pas un corps. En revanche, la sphère de Riemann a un comportement géométriquement et analytiquement non divergent, même au voisinage de l'infini ; c'est une variété complexe unidimensionnelle, également appelée une surface de Riemann.

En analyse complexe, la sphère de Riemann permet une expression élégante de la théorie des fonctions méromorphes. La sphère de Riemann est omniprésente en géométrie projective et en géométrie algébrique comme exemple fondamental d'une variété complexe, d'un espace projectif, et d'une variété algébrique. Elle a également une utilité dans d'autres disciplines qui dépendent de l'analyse et de la géométrie, telle que la physique quantique (représentation des états quantiques) et d'autres branches de la physique (théorie des twisteurs par exemple).

Projection stéréographique d'un point A du plan complexe sur le point α de la sphère de Riemann. Idem pour un point B dont le module est inférieur à 1.

La projection stéréographique, par exemple sur le plan équatorial à partir du pôle Nord, permet de voir que la sphère privée d'un point est homéomorphe au plan. Inversement, on passe du plan à la sphère en ajoutant un point à l'infini, noté \infty\,. Mais le plan \mathbb{R}^2\, peut s'identifier à \mathbb C\,.

La sphère de Riemann, c'est la sphère usuelle envisagée de ce point de vue, autrement dit la droite projective complexe.

Remarque

Plus généralement, l'espace \mathbb{R}^n\, est homéomorphe à la sphère S^n\, (sphère unité de l'espace euclidien \mathbb{R}^{n+1}\,) privée d'un point. Encore plus généralement, le passage de \mathbb{R}^n\, à S^n\, est un exemple de compactification d'Alexandrov

La droite projective complexe

C'est l'ensemble des "droites vectorielles" de \mathbb{C}^2\,. Une telle droite étant définie par un vecteur non nul, défini à un coefficient de proportionnalité près, on peut la voir comme \mathbb{C}^2\setminus\{0\}\, quotienté par la relation d'équivalence

 (z,t)\sim (z^\prime, t^\prime) si et seulement s'il existe un nombre complexe \lambda\, non nul tel que  (z,t)=\lambda (z^\prime, t^\prime).

On la note \mathbb P^1(\mathbb C) (voir l'article espace projectif pour la construction générale de l'espace projectif, et on note  [z,t]\, le point associé à  (z,t)\,. On dit que  (z,t)\, est un système de coordonnées homogènes du point  [z,t]\,.

Remarquons aussi que \phi_1 : z\mapsto [z,1] est une bijection de \mathbb{C} sur \mathbb P^1(\mathbb C)\setminus[1,0].
De même : \phi_2 : z\mapsto [1,z] est une bijection de \mathbb{C} sur \mathbb P^1(\mathbb C)\setminus[0,1].

Ces deux façons d'identifier \mathbb{C} à \mathbb P^1(\mathbb C) privé d'un point sont analogues aux identications de \mathbb{R}^2\, à la sphère unité privée d'un point à l'aide des projections stéréographiques de pôles Nord et Sud.

Cette remarque permet de donner une bijection explicite entre S^2=\big\{(X,Y,Z)\in\mathbb{R}^3\,\big|\,X^2+Y^2+Z^2=1\big\} et \mathbb P^1(\mathbb C). C'est l'application g\, définie par


g(X,Y,Z)=[X+iY,Z]\, si Z\not=1\, et g(X,Y,Z)=[Z,X-iY]\, si Z\not=-1\,

(ces deux définitions sont compatibles si Z\not=\pm 1, grâce à l'équation de la sphère !).

Son application réciproque, si on identifie \mathbb{R}^3\, à \mathbb{C}\times\mathbb{R},. est


H :(z,t)\mapsto \left(\frac{2z\overline t}{\vert z\vert^2+ \vert t\vert^2},
\frac{\vert z\vert^2- \vert t\vert^2}{\vert z\vert^2+ \vert t\vert^2}\right)

Homographies

On peut faire agir une matrice de GL_2(\mathbb C) sur la sphère; la matrice a,b,c,d agit sur z\in\mathbb P^1(\mathbb C) ainsi:

  • si z\in\mathbb C et bz+d\neq0, on lui associe \frac{az+c}{bz+d}
  • si z\in\mathbb C et bz + d = 0, on lui associe \infty
  • si z=\infty et b = 0, on lui associe \infty
  • si z=\infty et b\neq0, on lui associe \frac{a}{b}

Une homographie est la bijection de la sphère de Riemann induite par l'action d'une matrice (on identifie souvent les deux); c'est même une fonction méromorphe.

Voir Aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Sph%C3%A8re de Riemann ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Sphère de Gauss de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Gauss (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Carl Friedrich Gauss (1777 1855), mathématicien, astronome et physicien allemand. Le gauss, une unité de mesure du champ magnétique, noté G. GAUSS, un… …   Wikipédia en Français

  • GAUSS (C. F.) — L’œuvre du mathématicien allemand Carl Friedrich Gauss (né à Brunswick, mort à Göttingen) est un monument d’une ampleur et d’une richesse sans égale: non seulement il y a Gauss mathématicien, mais il y a aussi le calculateur, le géodésien,… …   Encyclopédie Universelle

  • Gauss–Bonnet theorem — The Gauss–Bonnet theorem or Gauss–Bonnet formula in differential geometry is an important statement about surfaces which connects their geometry (in the sense of curvature) to their topology (in the sense of the Euler characteristic). It is named …   Wikipedia

  • Gauss' law for gravity — In physics, Gauss law for gravity, also known as Gauss flux theorem for gravity, is a law of physics which is essentially equivalent to Newton s law of universal gravitation. Its form is mathematically similar to Gauss law for electricity; in… …   Wikipedia

  • Gauss map — In differential geometry, the Gauss map (named after Carl F. Gauss) maps a surface in Euclidean space R3 to the unit sphere S 2. Namely, given a surface X lying in R3, the Gauss map is a continuous map N : X → S 2 such that N ( p ) is a unit… …   Wikipedia

  • Sphere packing — In mathematics, sphere packing problems are problems concerning arrangements of non overlapping identical spheres which fill a space. Usually the space involved is three dimensional Euclidean space. However, sphere packing problems can be… …   Wikipedia

  • Gauss, Carl Friedrich — orig. Johann Friedrich Carl Gauss born April 30, 1777, Brunswick, Duchy of Brunswick died Feb. 23, 1855, Göttingen, Hanover German mathematician, astronomer, and physicist. Born to poor parents, he was a prodigy of astounding depth. By his early… …   Universalium

  • Gauss's lemma (Riemannian geometry) — In Riemannian geometry, Gauss s lemma asserts that any sufficiently small sphere centered at a point in a Riemannian manifold is perpendicular to every geodesic through the point. More formally, let M be a Riemannian manifold, equipped with its… …   Wikipedia

  • Gauss–Codazzi equations — In Riemannian geometry, the Gauss–Codazzi–Mainardi equations are fundamental equations in the theory of embedded hypersurfaces in a Euclidean space, and more generally submanifolds of Riemannian manifolds. They also have applications for embedded …   Wikipedia

  • Gauss's law for magnetism — In physics, Gauss s law for magnetism is one of Maxwell s equations, the four equations that underlie classical electrodynamics. It states that the magnetic field B has divergence equal to zero, in other words, that it is a solenoidal vector… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”