Seizième problème de Hilbert

Seizième problème de Hilbert

Le seizième problème de Hilbert est l'un des 23 problèmes de Hilbert.

Il comporte deux parties. La première concerne le nombre de branches réelles (ovales) d'une courbe algébrique, et leur disposition ; de nombreux résultats modernes (Petrovskii, Thom, Arnold) apportent des informations à leur sujet. La seconde partie du problème pose la question du nombre maximal et de la position mutuelle des cycles limites de Poincaré (orbites périodiques isolées) pour une équation différentielle polynomiale plane de degré donné ; cette question est encore ouverte.

Mise à part l'hypothèse de Riemann (huitième problème de Hilbert), il semble que ce soit le problème le plus insaisissable des problèmes de Hilbert. Il figure sur la liste des problèmes de Smale sous le numéro 13.

Il a été prouvé par Jean Écalle et Yulii Ilyashenko (1991-1992) que le nombre des cycles limites d'une équation polynomiale donnée est fini (résultat affirmé précédemment par Henri Dulac en 1923). Il n'est toujours pas connu (2008) si le nombre maximal H(N) des cycles limites d'une équation polynomiale de degré donné N > 1 est fini.

Sources

  • J. Écalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris, 1992.
  • YU. Ilyashenko, Finiteness theorems for limit cycles, American Mathematical Society, Providence, RI, 1991.
  • YU. Ilyashenko, Centennial History of Hilbert's 16th Problem, Bull. Amer. Math. Soc. 39 (2002), 301-354.




Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Seizième problème de Hilbert de Wikipédia en français (auteurs)

Игры ⚽ Поможем сделать НИР

Regardez d'autres dictionnaires:

  • Dixième problème de Hilbert — Le dixième problème de Hilbert demande de trouver une méthode algorithmique générale pour la recherche des solutions entières des équations diophantiennes à plusieurs inconnues, c est à dire des équations polynômiales à coefficients entiers. Il… …   Wikipédia en Français

  • Troisieme probleme de Hilbert — Troisième problème de Hilbert Le troisième problème de Hilbert est l un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. Étant donnés deux polyèdres d égal volume, est il possible de découper… …   Wikipédia en Français

  • Troisième problème de Hilbert — Le troisième problème de Hilbert est l un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. Étant donnés deux polyèdres d égal volume, est il possible de découper le premier polyèdre en des… …   Wikipédia en Français

  • Troisième problème de hilbert — Le troisième problème de Hilbert est l un des 23 problèmes de Hilbert. Considéré comme le plus facile, il traite de la géométrie des polyèdres. Étant donnés deux polyèdres d égal volume, est il possible de découper le premier polyèdre en des… …   Wikipédia en Français

  • Neuvieme probleme de Hilbert — Neuvième problème de Hilbert Le neuvième problème de Hilbert est l un des vingt trois problèmes ouverts proposés comme défis du XXe siècle par David Hilbert au second congrès international de mathématiques en 1900. Il consiste à généraliser… …   Wikipédia en Français

  • Neuvième Problème De Hilbert — Le neuvième problème de Hilbert est l un des vingt trois problèmes ouverts proposés comme défis du XXe siècle par David Hilbert au second congrès international de mathématiques en 1900. Il consiste à généraliser la loi de réciprocité… …   Wikipédia en Français

  • Neuvième problème de hilbert — Le neuvième problème de Hilbert est l un des vingt trois problèmes ouverts proposés comme défis du XXe siècle par David Hilbert au second congrès international de mathématiques en 1900. Il consiste à généraliser la loi de réciprocité… …   Wikipédia en Français

  • Septieme probleme de Hilbert — Septième problème de Hilbert Le septième problème de Hilbert concerne l irrationalité et la transcendance de certains nombres (Irrationalität und Transzendenz bestimmter Zahlen). Dans sa formulation géométrique, il demande quand l assertion… …   Wikipédia en Français

  • Septième problème de hilbert — Le septième problème de Hilbert concerne l irrationalité et la transcendance de certains nombres (Irrationalität und Transzendenz bestimmter Zahlen). Dans sa formulation géométrique, il demande quand l assertion suivante est démontrable :… …   Wikipédia en Français

  • Huitième problème de Hilbert — Hypothèse de Riemann Représentation de la valeur absolue de la fonction zêta de Riemann. L hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien Bernhard Riemann. Elle dit que les zéros non triviaux de la fonction zêta de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”