Phenomene de Gibbs

Phenomene de Gibbs

Phénomène de Gibbs

Lors de l'étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d'une discontinuité, lors de l'analyse d'une fonction dérivable par morceaux.

Sommaire

Histoire

Le phénomène fut mis pour la première fois en évidence en 1848 par Wilbraham[1], mais cette découverte ne connut guère d'écho.

En 1898, Albert Michelson développa un système mécanique capable de calculer et sommer la série de Fourier d'un signal donné en entrée. Il observa alors un effet d'amplification des discontinuités, qui persistait malgré l'augmentation du nombre de coefficients calculés.

Alors que Michelson soupçonnait un défaut dans la fabrication de son engin, Gibbs montra que le phénomène était d'origine mathématique et se produisait dans des conditions très générales[2]. En 1906, Maxime Bôcher donna la première interprétation satisfaisante du phénomène[3] auquel il donna le nom de phénomène de Gibbs.

Description du phénomène

Phénomène de Gibbs
Approximation du créneau à l'ordre 10
Approximation du créneau à l'ordre 50
Approximation du créneau à l'ordre 250


Le phénomène de Gibbs est, en quelque sorte, un « défaut d'approximation » pour une fonction continue de classe C1 par morceaux. Pour une telle fonction f, le théorème de Dirichlet assure que la série de Fourier de f converge simplement vers la fonction f sur l'intervalle où f est C1 par morceaux. En tout point x de continuité la somme de la série de Fourier est f(x).

Le polynôme trigonométrique n-ième terme de la série de Fourier, Sn(f), est une fonction continue, il est donc normal qu'il ne puisse approcher uniformément la fonction aux points de discontinuité. Précisément, sur un segment sur lequel f est dérivable, on observe une convergence uniforme, conformément au théorème de Weierstrass trigonométrique (c'est le cas des zones de « plateau » dans l'exemple de la fonction créneau).

Au niveau du point de discontinuité x, Sn(f) subit une forte oscillation, une sorte de « ressaut » qui se mesure en comparant les valeurs en x-\frac{\pi}{n} et x+\frac{\pi}{n}. En effet, toujours d'après le théorème de Dirichlet, la série de Fourier de f converge aussi simplement aux points de discontinuités mais vers la régularisée de Dirichlet, ie la demi-somme des valeurs de f de part et d'autre du point de dicontinuités. Lorsque n devient grand, l'amplitude de ces oscillations tend vers une limite strictement plus grande que l'amplitude de la discontinuité, alors que la largeur de la zone d'oscillation tend vers 0.

Il est remarquable que le phénomène s'exprime quantitativement de façon indépendante de la fonction considérée. Si la fonction a une discontinuité d'amplitude Δy, alors Sn(f), tout en restant continue, connaitra un « ressaut » en ordonnée valant de l'ordre de 18% de plus au voisinage de la discontinuité.

Synthesis square.gif

Liens avec la causalité

Les appareils de mesure se comportent comme des filtres passe-bas : ils sont incapables de réagir à des signaux de trop haute fréquence. Supposons que l'on mesure un échelon de tension : il sera déformé et fera apparaître des oscillations avant et après la discontinuité du signal réel.

Cependant, cela signifierait que les oscillations se sont produites avant que l'échelon ne soit mesuré, ce qui briserait la causalité. En réalité, cela peut avoir deux interprétations : soit les appareils ne sont pas des filtres parfaits (ce qui est compréhensible), soit l'échelon de tension ne peut être parfaitement discontinu.

Si on considère l'une ou l'autre de ces corrections, la transformée de Fourier est simplement décalée : les oscillations débutent au moment où l'échelon est envoyé, l'échelon n'étant observé qu'après un léger retard.

Notes et références

  1. Henry Wilbraham, On a certain periodic function, Cambridge Dublin Math. J. 3, 1848, p. 198-201
  2. Josiah Willard Gibbs, Fourier Series, Nature 59, 200 (1898) and 606 (1899)
  3. Maxime Bôcher, Introduction to the theory of Fourier's series, Annals of Math. 7 (1906), p. 81-152

Voir aussi

Articles connexes

Bibliographie

  • (en) Antoni Zygmund, Trigonometrical series, Dover publications, 1955.
  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Ph%C3%A9nom%C3%A8ne de Gibbs ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Phenomene de Gibbs de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать реферат

Regardez d'autres dictionnaires:

  • Phénomène de gibbs — Lors de l étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d une discontinuité, lors… …   Wikipédia en Français

  • Phénomène de Gibbs — Lors de l étude des séries de Fourier et des transformées de Fourier, il apparaît parfois une déformation du signal, connue sous le nom de phénomène de Gibbs. Ce phénomène est un effet de bord qui se produit à proximité d une discontinuité, lors… …   Wikipédia en Français

  • Phenomene de Runge — Phénomène de Runge La courbe rouge est la fonction de Runge ; la courbe bleue est le polynôme interpolateur de degré 5 et la courbe verte est le polynôme interpolateur de degré 9. L approximation est de plus en plus mauvaise. Dans le domaine …   Wikipédia en Français

  • Phénomène de runge — La courbe rouge est la fonction de Runge ; la courbe bleue est le polynôme interpolateur de degré 5 et la courbe verte est le polynôme interpolateur de degré 9. L approximation est de plus en plus mauvaise. Dans le domaine mathématique de l… …   Wikipédia en Français

  • Gibbs — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sommaire 1 Univers de fiction 2 En sciences 2.1 …   Wikipédia en Français

  • Phénomène de Runge — La courbe rouge est la fonction de Runge ; la courbe bleue est le polynôme interpolateur de degré 5 et la courbe verte est le polynôme interpolateur de degré 9. L approximation est de plus en plus mauvaise. Dans le domaine mathématique de l… …   Wikipédia en Français

  • Coefficient de Fourier — Série de Fourier Le premier graphe donne l allure du graphe d une fonction périodique ; l histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse, les séries de Fourier sont… …   Wikipédia en Français

  • Coefficients de Fourier — Série de Fourier Le premier graphe donne l allure du graphe d une fonction périodique ; l histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse, les séries de Fourier sont… …   Wikipédia en Français

  • Décomposition d'un signal non sinusoïdal en séries de Fourier — Série de Fourier Le premier graphe donne l allure du graphe d une fonction périodique ; l histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse, les séries de Fourier sont… …   Wikipédia en Français

  • Définition et décomposition en série de Fourier d'un signal non sinusoidal — Série de Fourier Le premier graphe donne l allure du graphe d une fonction périodique ; l histogramme donne les valeurs des modules des coefficients de Fourier correspondant aux différentes fréquences. En analyse, les séries de Fourier sont… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”