- Inégalité de Boole
-
En théorie des probabilités, l'inégalité de Boole stipule que pour toute famille finie ou dénombrable d'événements, la probabilité que l'un au moins des événements se réalise est inférieure ou égale à la somme des probabilités des événements pris isolément. Plus formellement,
Inégalité de Boole — Pour une famille au plus dénombrable d'événements A1, A2, A3, ..., on a :
DémonstrationOn traite d'abord, par récurrence, le cas d'une famille finie d'évènements.
Il s'agit de prouver que .
L'inégalité est vraie au rang m = 1. On la suppose vraie à un rang m et l'on considère une famille de m + 1 évènements.
Soit : (hypothèse de récurrence).
Alors : ,
d'où : .
On traite maintenant le cas d'une suite dénombrable d'évènements.
Pour tout entier strictement positif n, soit ; alors .
L'inégalité de Boole en découle par passage à la limite sur n ; en effet et pour tout n, , donc .
Autre méthode (traitant à la fois le cas fini et le cas dénombrable).
On pose et pour tout , .Alors , et les évènements sont deux à deux incompatibles ;
en outre, pour tout , donc (croissance de ).De tout ceci, il résulte : .
En termes de la théorie de la mesure, l'inégalité de Boole exprime le fait qu'une mesure de probabilité est σ-sous-additive (comme toute mesure).
Conséquence — L'intersection d'une famille finie ou dénombrable d'évènements presque certains, B1, B2, B3, ..., est presque certaine (il suffit d'appliquer l'inégalité de Boole aux complémentaires des Bn).
Inégalités de Bonferroni
Les inégalités de Bonferroni, dues à Carlo Emilio Bonferroni, généralisent l'inégalité de Boole. Elles fournissent des majorants et des minorants de la probabilité d'unions finies d'événements.
Posons :
et pour 2 < k ≤ n,
où la somme est effectuée sur tous les k-uplets strictement croissants d'entiers compris entre 1 et n.
Alors pour tout entier impair k tel que 1 ≤ k ≤ n
et pour tout entier pair k tel que 2 ≤ k ≤ n
On retrouve l'inégalité de Boole pour k = 1.
Références
Cet article est élaboré à partir d'une traduction de l'article de Wikipédia en anglais, lui-même tiré d'un article de PlanetMath, disponible sous GFDL.
Voir aussi
- Portail des probabilités et des statistiques
-
Wikimedia Foundation. 2010.