Integrale de surface

Integrale de surface

Intégrale de surface

En mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l'espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel.

Les intégrales de surface ont de nombreuses applications dans la théorie classique de l'électromagnétisme.

Intégrale de surface sur un champ scalaire

Pour trouver une formule explicite de l'intégrale de surface, il faut généralement paramétrer la surface S en question en considérant un système de coordonnées curvilignes, comme la longitude et la latitude sur une sphère. Une fois le paramétrage x(s,t) trouvé, où s et t varie dans une région du plan, l'intégrale de surface d'un champ scalaire est donnée par :

\int_S f \mathrm dS = \iint_T f\bigl(\mathbf{x}(s, t)\bigr) \left\|\frac{\partial \mathbf{x}}{\partial s}\wedge\frac{\partial \mathbf{x}}{\partial t}\right\|\;\mathrm ds\,\mathrm dt

De plus l'aire de S est donnée par  :

\int_S \mathrm dS =\iint_T \left\|\frac{\partial \mathbf{x}} {\partial s}\wedge\frac{\partial \mathbf{x}}{\partial t}\right\|\;\mathrm ds\,\mathrm dt .

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Int%C3%A9grale de surface ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Integrale de surface de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • Intégrale De Surface — En mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel. Les intégrales de surface… …   Wikipédia en Français

  • Intégrale de surface — En mathématiques, une intégrale de surface est une intégrale définie sur toute une surface qui peut être courbe dans l espace. Pour une surface donnée, on peut intégrer sur un champ scalaire ou sur un champ vectoriel. Les intégrales de surface… …   Wikipédia en Français

  • intégrale de surface — paviršinis integralas statusas T sritis fizika atitikmenys: angl. area integral; surface integral vok. Flächenintegral, n rus. поверхностный интеграл, m pranc. intégrale de surface, f …   Fizikos terminų žodynas

  • Intégrale de surface ou intégrale d'une fonction sur une surface — ● Intégrale de surface ou intégrale d une fonction sur une surface flux de cette fonction à travers la surface …   Encyclopédie Universelle

  • intégrale — ● intégrale nom féminin Œuvre complète d un écrivain, d un musicien : L intégrale des cantates de Bach. Limite, lorsqu elle existe, de sommes d un nombre indéfiniment croissant d éléments indéfiniment petits construits en divisant indéfiniment le …   Encyclopédie Universelle

  • Integrale curviligne — Intégrale curviligne En mathématiques, l intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe. Sommaire 1 Analyse complexe 1.1 Exemple …   Wikipédia en Français

  • Intégrale Curviligne — En mathématiques, l intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe. Sommaire 1 Analyse complexe 1.1 Exemple …   Wikipédia en Français

  • Surface (homoymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. la surface est un espace géométrique, Voir aussi catégorie:surface (en géométrie) Lexique des surfaces Microsoft Surface : une table tactile. grande… …   Wikipédia en Français

  • Surface de Gauss — En électromagnétisme, une surface de Gauss est une surface imaginaire de l espace utilisée dans le calcul des champs électriques par le théorème de Gauss. Puisque le théorème de Gauss peut être utilisé dans le cas de certaines symétries… …   Wikipédia en Français

  • Intégrale curviligne — En mathématiques, l intégrale curviligne est une intégrale où la fonction à intégrer est évaluée sur une courbe. Sommaire 1 Analyse complexe 1.1 Exemple …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”