- Fonction des proteines
-
Fonction des protéines
Une idée commune est que chaque protéine ne remplit en général qu'une seule fonction. Or toute fonction d'une protéine requiert au minimum une liaison avec un substrat, il y a donc une fonction de reconnaissance, puis de cette liaison découle un ou plusieurs événements, qui peuvent avoir des effets à différentes échelles dans l'organisme. La notion de fonction d'une protéine est un concept très flou. C'est pourquoi on tend de plus en plus à essayer d'avoir une vision hiérachique de la fonction des protéines en décomposant la fonction suivant les niveaux de description suivants :
- macroscopique
- cellulaire
- moléculaire
D'une manière très générale, ces fonctions peuvent être réparties dans six grands groupes.
Il existe quatre niveaux de structure chez les protéines.
Une protéine est une chaîne d'acides aminés.Sommaire
Catalyse
Certaines protéines sont des catalyseurs de réactions chimiques : elles permettent à des réactions chimiques de se dérouler rapidement dans les conditions de température et de pression conformes à la vie. Ces protéines sont alors appelées enzymes. Par exemple, la dégradation du glucose en vue d'extraire l'énergie contenue dans cette molécule, se fait par l'action combinée d'une dizaine d'enzymes dans une voie métabolique appelée glycolyse. Un morceau de sucre laissé sur une table a une probabilité infinitésimale de se décomposer en gaz carbonique et eau, on peut accélérer cette réaction en chauffant fortement le sucre. Soumis à l'action des enzymes glycolytiques, cette réaction ne prend que quelques secondes à 37°C et à une pression de 1 atmosphère.
Les maladie métabolique surviennent lorsque l'une des enzymes d'une voie métabolique est mutée et possède une fonctionnalité différente de la normale.
Structure cellulaire
La forme des cellules et des tissus ainsi que leur résistance aux contraintes physiques est procurée par les protéines de structure, comme le collagène ou les protéines du cytosquelette.
Mobilité cellulaire
Les protéines contractiles composant le muscle, actine et myosine, sont à l'origine des mouvements cellulaires, ainsi que de la mitose. Les protéines sont aussi constitutives des flagelles de locomotion des spermatozoïdes et de certaines bactéries.
Communication cellulaire
La communication intercellulaire est d'une importance cruciale pour le développement et le fonctionnement coordonné de l'organisme. On retrouve des protéines ayant une fonction de Récepteur d'hormone. Dans le cas d'hormones hydrophiles (ne pouvant traverser la membrane cellulaire), le récepteur est une protéine membranaire intégrée dans la membrane et ayant un site de fixation du côté exterieur à la cellule, tandis que sa partie intracellulaire permet de transmettre l'information convoyée par l'hormone. Dans le cas d'hormones lipophiles, donc traversant librement la membrane, comme par exemple les œstrogènes, la protéine récepteur est cytosolique. La fixation induit un changement de conformation du récepteur (sa structure tridimensionnelle est modifée), lui permettant alors de se fixer à sa cible effectrice, qui dans le cas de l'œstrogène est une séquence d'ADN.
Toute une série de protéines permettent de convoyer l'information depuis l'origine jusqu'à la cible finale. Ce sont les enzymes de signalisation cellulaire. L'un des mécanismes les plus souvent rencontré est la phosphorylation de cibles effectuées par un groupe de protéines appelé protéines kinases. La déphosphorylation, tout aussi importante, est le fait de phosphatases.
Système immunitaire
Les immunoglobulines qui permettent de reconnaitre le soi du non-soi sont des protéines ; elles sont souvent appelés anticorps. On estime à plusieurs milliards le nombre d'immunoglobulines différentes, chacune synthétisée par une cellule différente (clone), appelée lymphocyte B. Au cours de la vaccination, un lymphocyte B reconnait l'antigène introduit et se multiplie par mitoses, multipliant ainsi le nombre de sites de fabrication de l'anticorps.
Transport
Plusieurs protéines possèdent une fonction de transport : l'hémoglobine pour le transport du dioxygène, la transferrine pour le transport du fer. Un autre type de transport est assuré par les canaux ioniques. Ils permettent le transport d'ions à travers la membrane cellulaire, qui leur est autrement imperméable. Ces canaux sont à l'origine des activités électriques mesurées dans le cerveau et assurent la contraction du muscle. Ils sont aussi à l'origine de la filtration du sang au niveau du rein et de la réabsorption des ions contenus dans l'urine primitive, qui est le sang dépourvu des éléments figurés (cellules). Un autre type de transport transmembranaire est assurée par les transporteurs, qui, au contraire des canaux ioniques, nécessitent un apport énergétique pour remplir leur fonction. Les transports d'électrons sont assurés par les enzymes de la respiration cellulaire et de la photosynthèse.
- Portail de la biochimie
Catégorie : Protéine
Wikimedia Foundation. 2010.