Diffusion raman

Diffusion raman

Diffusion Raman

La diffusion Raman, ou effet Raman, est un phénomène optique découvert par le physicien indien Chandrashekhara Venkata Râman. Cet effet consiste en la diffusion inélastique d'un photon, c'est-à-dire le phénomène physique par lequel un milieu peut diffuser de la lumière en modifiant légèrement sa fréquence. Ce décalage en fréquence correspond à un échange d'énergie entre le rayon lumineux et le milieu.

Cet échange peut avoir plusieurs causes : vibrations du cristal ou de la molécule, excitations magnétiques... La mesure de ce décalage permet de remonter à certaines propriétés du milieu. On parle alors de spectroscopie Raman. Cette technique est largement répandue dans l'industrie et la recherche depuis l'apparition du laser.

Dans le cas particulier ou la diffusion est due à des ondes acoustiques, on parle de diffusion Brillouin.

Sommaire

Historique

En 1922, le physicien indien Chandrashekhara Venkata Râman a publié son ouvrage sur "la diffraction moléculaire de la lumière", première d'une série d'investigations avec ses collaborateurs qui a ultimement mené à sa découverte, le 28 février 1928, de l'effet optique qui porte son nom. L'effet Raman a été rapporté pour la première fois par C. V. Raman et K. S. Krishnan, et indépendamment par Grigory Landsberg et Leonid Mandelstam en 1928. Raman a reçu le Prix Nobel en 1930 pour son travail sur la diffusion de la lumière.

Description

La diffusion Raman est la diffusion inélastique d'un photon par un milieu. Le fait que la diffusion soit inélastique implique qu'il y a un échange d'énergie entre le photon incident et la molécule via la création ou l'annihilation d'un phonon optique. Ainsi, la lumière diffusée n'a pas la même longueur d'onde que la lumière incidente. On distingue deux cas :

S'il n'y a pas d'échange d'énergie entre la molécule et le photon incident, alors la diffusion est élastique et la longueur d'onde du photon diffusé n'est pas décalée. On parle alors de diffusion Rayleigh.

Le décalage en longueur d’onde dépend de la matière et lui est caractéristique : il ne dépend pas de la longueur d’onde d’excitation, ce qui rend possible une analyse de la composition chimique d'un échantillon à partir de la façon dont il diffuse la lumière (voir #Application à la spectroscopie Raman).

L'intensité des raies Raman dépend seulement du nombre de molécules dans les différents modes vibrationnels qui leur sont associés. L’utilisation de la distribution de Boltzmann permet de rendre compte correctement du rapport d’intensité entre les raies Stokes et anti-Stokes : les modes vibrationnels de basse énergie étant les plus peuplés, les raies Stokes sont plus intenses que les raies anti-Stokes.

Les photons incidents peuvent être diffusés mais peuvent aussi modifier les vibrations dans l'échantillon étudié, en créant (processus Stokes) ou en détruisant (processus anti-Stokes) des phonons. Les raies Raman (Stokes et anti-Stokes) sont caractéristiques de la composition chimique du matériau, de sa structure cristalline ainsi que de ses propriétés électroniques. L'utilisation concerne alors la chimie, l'œnologie, la bijouterie... C'est une des rares méthodes qui permet, à température ambiante, d'obtenir une caractérisation vibrationnelle ou chimique d'un objet. De plus, elle est non destructive et nécessite une très petite portion de matériau. Dans certains cas particuliers, il est également possible d'estimer des concentrations relatives à l'aide d'une référence connue.

Son inconvénient majeur est la faible intensité de ses raies qui est très inférieure à celle des raies Rayleigh. Il existe cependant un effet Raman en résonance qui fait appel à la théorie vibronique, ce phénomène s'explique plus simplement par le fait que lorsque la fréquence de l'excitatrice est proche des fréquences de transition électronique des atomes il y a un accroissement de l'intensité observée. Cet effet peut être recherché afin de réaliser de meilleures observations.

Application à la spectroscopie Raman

La spectroscopie Raman, ou spectrométrie Raman, est une méthode non-destructive permettant de caractériser la composition moléculaire et la structure d'un matériau. Cette technique est complémentaire de la spectroscopie infrarouge qui permet également d'étudier les modes vibrationnels d'un matériau.

La méthode consiste à focaliser (avec une lentille) un faisceau de lumière monochromatique (un faisceau laser) sur l'échantillon à étudier et à analyser la lumière diffusée. Cette lumière est recueillie à l'aide d'une autre lentille et envoyée dans un monochromateur et son intensité est alors mesurée avec un détecteur (monocanal type photomultiplicateur ou CPM, multicanal type CCD).

Plusieurs géométries de diffusion sont possibles. On collecte en général la lumière diffusée soit à 180°, soit à 90°. On peut également jouer sur la polarisation des faisceaux incidents et diffusés.

La spectroscopie Raman est une technique de mesure locale : en focalisant le faisceau laser sur une petite partie du milieu, on peut sonder les propriétés de ce milieu sur un volume de quelques microns cube. On parle parfois de micro-Raman.

Modes de vibration (phonon)

Une application de la spectrocopie Raman est la mesure de fréquences de vibrations d'un réseau cristallin ou d'une molécule (phonons). Les modes de vibrations qu'il est possible de mesurer par spectroscopie Raman sont :

  • les modes de vibrations dont le vecteur d'onde est quasi-nul (ou la longueur d'onde quasi-infinie). Ceci est imposé par la conservation de la quantité de mouvement dans le processus de diffusion. Dans les solides, on ne peut donc avoir accès qu'au centre de la première zone de Brillouin.
  • les modes de vibration qui provoquent une variation de la polarisabilité du milieu. Ces modes de vibration sont dit actifs.

De plus, parmi les modes actifs, certains ne sont détectables que dans une géométrie de diffusion donnée. Une analyse des symétries du cristal ou de la molécule permet de prédire quels modes de vibrations seront détectables.

Excitations magnétiques (magnon)

La spectroscopie Raman est également sensible aux ondes de spin (ou magnons). De même que pour les phonons, seuls les ondes de spin de vecteur d'onde quasi-nul sont détectables.

Voir aussi


  • Portail de la physique Portail de la physique
Ce document provient de « Diffusion Raman ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Diffusion raman de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Diffusion Raman — La diffusion Raman, ou effet Raman, est un phénomène optique découvert indépendamment en 1928 par les physiciens Chandrashekhara Venkata Râman et Leonid Mandelstam. Cet effet consiste en la diffusion inélastique d un photon, c est à dire le… …   Wikipédia en Français

  • diffusion Raman — Ramano sklaida statusas T sritis fizika atitikmenys: angl. combination scattering; Raman scattering vok. Raman Streuung, f; unelastische Streuung, f rus. комбинационное рассеяние, n; рамановское рассеяние, n pranc. diffusion de Raman, f;… …   Fizikos terminų žodynas

  • diffusion Raman — Ramano sklaida statusas T sritis Standartizacija ir metrologija apibrėžtis Vienspalvės šviesos sklaida, kurios metu medžiagoje pakinta spinduliuotės dažnis. atitikmenys: angl. combination scattering; Raman scattering vok. Raman Streuung, f;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • diffusion Raman stimulée à réversion des spins — priverstinė sukininė apgrąžinė Ramano sklaida statusas T sritis radioelektronika atitikmenys: angl. stimulated spin flip Raman scattering vok. erzwungene Raman Streuung mit Spininversion, f rus. вынужденное комбинационное рассеяние с… …   Radioelektronikos terminų žodynas

  • RAMAN (EFFET) — L’effet Raman est un phénomène physique de diffusion moléculaire de la lumière, mis en évidence expérimentalement en 1928 par le physicien indien Chandrasekhara Venkata Raman, lauréat du prix Nobel en 1930. Dès les premiers travaux se sont… …   Encyclopédie Universelle

  • Diffusion Des Ondes — Pour les articles homonymes, voir Diffusion. La diffusion est le phénomène par lequel un rayonnement, comme la lumière, le son ou une particule en mouvement est dévié dans de multiples directions (on peut parler d « éparpillement ») par …   Wikipédia en Français

  • Diffusion (Nucléaire) — Diffusion Rutherford En physique nucléaire, la diffusion Rutherford est un phénomène expliqué par Ernest Rutherford en 1911, et qui a conduit au développement du modèle de Bohr de l atome. Cette diffusion est parfois appelé diffusion de Coulomb,… …   Wikipédia en Français

  • Diffusion (nucléaire) — Diffusion Rutherford En physique nucléaire, la diffusion Rutherford est un phénomène expliqué par Ernest Rutherford en 1911, et qui a conduit au développement du modèle de Bohr de l atome. Cette diffusion est parfois appelé diffusion de Coulomb,… …   Wikipédia en Français

  • Diffusion de Rayleigh — Diffusion Rayleigh La diffusion Rayleigh est un mode de diffusion des ondes, par exemple électromagnétiques ou sonores, dont la longueur d onde est très supérieure à la taille des particules diffusantes. On parle de diffusion élastique, car cela… …   Wikipédia en Français

  • Diffusion de particules — Diffusion des particules Pour les articles homonymes, voir Diffusion. En physique des particules, la diffusion désigne l interaction de deux particules en mouvement l une par rapport à l autre. La diffusion des ondes peut être vue comme un cas… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”