- Classification des groupes simples finis
-
La classification des groupes finis simples, aussi appelée le théorème énorme, est un vaste corps de travail en mathématiques, principalement publié entre environ 1955 et 1983, qui a pour but de classer tous les groupes simples finis. En tout, le travail comprend des dizaines de milliers de pages dans 500 articles par plus de 100 auteurs.
Sommaire
La classification
Dans l'étude de la classification des groupes finis simples, les mathématiciens ont été amenés à découvrir des êtres mathématiques inattendus qu'ils appelèrent des groupes sporadiques pour marquer ce qu'ils ont d'inhabituel. Si elle est correcte, la classification montre que chaque groupe fini simple est de l'un des types suivants :
- un groupe cyclique avec un ordre premier,
- un groupe alterné de degré au moins égal à 5,
- un groupe classique (groupe linéaire spécial projectif, symplectique, orthogonal ou unitaire sur un corps fini, comme le groupe simple d'ordre 168),
- un groupe de type de Lie exceptionnel ou tordu (incluant le groupe de Tits),
- un des 26 groupes connus sous le nom groupes sporadiques.
Le théorème a des applications répandues dans beaucoup de branches de mathématiques, comme les questions sur les groupes finis peuvent souvent être réduites à des questions sur les groupes finis simples, qui par la classification peuvent être réduits à une énumération de cas.
Quelquefois le groupe de Tits est regardé comme un groupe sporadique (dans ce cas, il existe 27 groupes sporadiques) parce qu'il n'est pas à strictement parler un groupe de type de Lie.
Scepticisme restant sur la démonstration
Certains doutes persistent si ces articles fournissent une démonstration complète et correcte, en raison de la longueur, de la complexité du travail publié et du fait que des parties de la démonstration supposée restent non-publiées. Jean-Pierre Serre est un sceptique notable de la réclamation d'une démonstration.
Pendant plus d'une décennie, les experts ont connu un « trou sérieux » (en accord avec Michael Aschbacher (en)) dans la classification (non-publiée) des groupes quasi-minces (en) due à Geoff Mason. En 1983, Daniel Gorenstein (en) annonça la classification des groupes finis simples, basée en partie sur l'impression que le cas quasi-mince était achevé. Aschbacher remplit ce trou au début des années 1990, aussi non-publié. Aschbacher et Steve Smith ont publié une démonstration différente comprenant deux volumes d'environ 1 300 pages.
Une classification de deuxième génération
À cause de l'extrême longueur de la démonstration de classification des groupes simples finis, il y a eu beaucoup de travaux, appelés « révisionnisme », originellement conduits par Daniel Gorenstein, dans la recherche d'une démonstration plus simple. C'est ce que l'on a appelé la démonstration de classification de deuxième génération.
Six volumes ont été publiés en 2005 et les manuscrits existent pour la plupart du reste. Les deux volumes d'Aschbacher et de Smith ont été écrits pour fournir une démonstration pour le cas quasi-mince qui marcherait avec la démonstration de première et deuxième génération. Il a été estimé que la nouvelle démonstration serait approximativement de 5 000 pages lorsqu'elle sera complète. Les nouvelles démonstrations ont été écrites dans un style plus généreux.
Gorenstein et ses collaborateurs ont donné plusieurs raisons pour lesquelles une démonstration plus simple était possible. La plus importante est que l'énoncé final et correct est maintenant connu. Les techniques qui peuvent être appliquées seront suffisantes pour les groupes actuels. Par contraste, pendant la démonstration originale, personne ne savait combien de groupes sporadiques existaient, et en fait, certains (par exemple, les groupes de Janko) ont été découverts dans le processus d'essai de démonstration des cas du théorème de classification. En conséquence, des techniques extrêmement générales ont été appliquées.
De nouveau, parce que la conclusion finale était inconnue pendant une longue période et on ne l'imaginait même pas, la démonstration originale consista en beaucoup de théorèmes complets séparés, classifiant les cas particuliers importants. La plus grosse partie du travail a été consacrée à l'analyse d'un grand nombre de cas particuliers. En tant qu'éléments d'une plus grande démonstration, bon nombre de ces cas particuliers ont pu être postposés jusqu'à ce que des propositions plus puissantes puissent être appliquées. Le prix payé de cette révision est que les théorèmes de première génération n'ont plus de démonstrations courtes mais ils dépendent de la classification complète.
Bon nombre des théorèmes de la première génération se recouvraient ce qui divisait les cas possibles de façon inefficace. La démonstration révisée relie les différentes subdivisions de cas, éliminant ces redondances.
Finalement, les théoriciens des groupes finis ont acquis plus d'expérience et de nouvelles techniques plus efficaces.
Références
- (en) Michael Aschbacher, The Status of the Classification of the Finite Simple Groups, Notes de l'American Mathematical Society, août 2004
- (en) Daniel Gorenstein, Richard Lyons, Ronald Solomon (de), The Classification of the Finite Simple Groups (volume 1), AMS, 1994 (volume 2), AMS,
- (en) Ronald Solomon, On Finite Simple Groups and their Classification, Notes de l'AMS, février 1995
- (en) John Horton Conway, R. T. Curtis, Simon P. Norton (en), Richard A. Parker (en) et Robert Arnott Wilson (en) : Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups, Oxford, England, 1985
- (en) Orders of non abelian simple groups : inclut une liste de tous les groupes simples non-abéliens jusqu'à l'ordre 10 000 000 000.
- (en) Atlas of Finite Group Representations : contient les représentations et d'autres données pour beaucoup de groupes finis simples, incluant les groupes sporadiques.
- (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Classification of finite simple groups » (voir la liste des auteurs)
Catégories :- Page à recycler (mathématiques)
- Théorie des groupes
- Groupe fini
Wikimedia Foundation. 2010.