Graphe de Goldner-Harary

Graphe de Goldner-Harary
Page d'aide sur l'homonymie Pour les articles homonymes, voir Goldner.
Graphe de Goldner-Harary
Représentation du graphe de Goldner-Harary.
Représentation du graphe de Goldner-Harary.
Nombre de sommets 11
Nombre d'arêtes 27
Distribution des degrés 3 (6 sommets)
6 (2 sommets)
8 (3 sommets)
Rayon 2
Diamètre 2
Maille 3
Automorphismes 12 (D6)
Nombre chromatique 4
Indice chromatique 8
Propriétés Parfait
Planaire

Le graphe de Goldner-Harary est, en théorie des graphes, un graphe possédant 11 sommets et 27 arêtes.

Sommaire

Propriétés

Propriétés générales

Le diamètre du graphe de Goldner-Harary, l'excentricité maximale de ses sommets, est 2, son rayon, l'excentricité minimale de ses sommets, est 2 et sa maille, la longueur de son plus court cycle, est 3. Il s'agit d'un graphe 3-sommet-connexe et d'un graphe 3-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 3 sommets ou de 3 arêtes.

Coloriage

Le nombre chromatique du graphe de Goldner-Harary est 4. C'est-à-dire qu'il est possible de le colorer avec 4 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes. Ce nombre est minimal.

L'indice chromatique du graphe de Goldner-Harary est 8. Il existe donc une 8-coloration des arêtes du graphe tels que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Il est possible de compter les colorations distinctes du graphe de Goldner-Harary. Cela donne une fonction dépendant du nombre de couleurs autorisé. C'est une fonction polynomiale et le polynôme qui lui est associé est qualifiée de polynôme chromatique. Ce polynôme de degré 11 admet pour racines tous les entiers positifs ou nuls strictement inférieurs à 4. Il est égal à : (x − 3)8(x − 2)(x − 1)x.

Propriétés algébriques

Le groupe d'automorphismes du graphe de Goldner-Harary est un groupe d'ordre 12 isomorphe au groupe diédral D6, le groupe des isométries du plan conservant un hexagone régulier. Ce groupe est constitué de 6 éléments correspondant aux rotations et de 6 autres correspondant aux réflexions.

Le polynôme caractéristique du graphe de Goldner-Harary est : − (x − 1)2x2(x + 2)3(x2 − 3)(x2 − 4x − 9).

Voir aussi

Liens internes

Liens externes

Références



Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Graphe de Goldner-Harary de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Goldner — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Goldner: Colin Goldner Richard Goldner (en) Graphe de Goldner Harary Catégorie : Homonymie …   Wikipédia en Français

  • Projet:Mathématiques/Liste des articles de mathématiques — Cette page n est plus mise à jour depuis l arrêt de DumZiBoT. Pour demander sa remise en service, faire une requête sur WP:RBOT Cette page recense les articles relatifs aux mathématiques, qui sont liés aux portails de mathématiques, géométrie ou… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”