Théorème fondamental de la géométrie affine

Théorème fondamental de la géométrie affine

En géométrie, le théorème fondamental de la géométrie affine est un théorème qui caractérise algébriquement les bijections entre espaces affines qui présevent l'alignement des points. Avec quelques hypothèses, il dit qu'une bijection entre deux espaces affines qui préserve la relation d'alignement est une application semi-affine, donc presque une application affine (et donc, en particulier, affine si les espaces affines sont réels).

Sommaire

Applications semi-affines

Applications semi-linéaires

Soient K et L deux corps (commutatifs ou non), E et F des espaces vectoriels sur K et L respectivement. On dit qu'une application f de E dans F est semi-linéaire si f est un homomorphisme de groupes additifs de E dans F (c'est-à-dire si f(v + w) = f(v) + f(w) quels que soient v et w dans E) et s'il existe un isomorphisme de corps σ de K sur L tel que, pour tout élément a de K et pour tout vecteur v de E, on a f(av) = σ(a)f(v) ; si f est non identiquement nulle, il existe un unique tel isomorphisme de corps de K sur L, et on dit alors que f est σ-linéaire, et σ est dit associé à f. On appelle isomorphisme semi-linéaire de E sur F ou, si K = L et E = F, automorphisme semi-linéaire de E, toute application semi-linéaire bijective de E sur F.

Exemples

  • Si K = L et si σ est l'identité de K, les application σ-linéaire de E dans F ne sont autres que les applications K-linéaires de E dans F.
  • Si K = L = R (corps des nombres réels), alors l'identité de R est l'unique automorphisme de corps de R, et donc les applications semi-linéaires de E dans F ne sont autres que les applications linéaires (ou plus précisément R-linéaires) de E dans F.
  • On suppose que K = L et que K est un corps premier, c'est-à-dire que K = Q (corps des nombres rationnels) ou que K = Fp, avec p un nombre premier voir l'article corps fini). Alors l'identité de K est l'unique automorphisme de corps de K, et les applications semi-linéaires de E dans F ne sont autres que les applications K-linéaires de E dans F.
  • On suppose que K = L = C (corps des nombres complexes) et que σ est la conjugaison de C. Alors les applications σ-linéaires de E dans F sont dites antilinéaires. Si E et F sont de dimensions finies, les seules application semi-affines non constantes de E vers F qui sont continues sont les applications C-linéaires et les applications antilinéaires (on considère ici les topologies canoniques, pour lesquelles les isomorphismes d'espaces vectoriels sur Cn sont des homéomorphismes).

Applications semi-affines

Soient X et Y des espaces affines attachés à E et F respectivement. On dit qu'une application f de X dans Y est semi-affine s'il existe une application semi-linéaire u de E dans F telle que, pour tout point x de X et pour tout vecteur v de E, f(x + v) = f(x) + u(v), et alors u est déterminé par f, et elle est dite associée à f, si f n'est pas constante, alors l'isomorphisme σ associé à u est dit associé à f, et on dit alors que f est σ-affine. On appelle isomorphisme semi-affine de E sur F ou, si K = L et E = F, automorphisme semi-affine de E, toute application semi-affine bijective de E sur F. Si K = L, alors les application K-affines de X dans Y ne sont autres que les application σ-affine de X dans Y, si σ est l'identité de K.

Théorème fondamental de la géométrie affine

Dans cette partie, on note K et L des corps, E et F des espaces vectoriels sur K et L respectivement de dimensions (finies ou non) supérieures ou égales à 2, X et Y des espaces affines attachés à E et F respectivement et f une application de E dans F.

Voici un théorème qui caractérise les applications semi-affines.

Théorème. Si f est une injection (ce qui est le cas si f est une bijection), pour que f soit semi-affine (et donc affine si K = L = R), il faut et il suffit que f vérifie les conditions suivantes:

  • L'image par f de toute droite de X est une droite de Y;
  • L'image par f de deux droites parallèles quelconques de X sont deux droites parallèles de Y.

Théorème fondamental de la géométrie affine. On suppose que K et L sont isomorphes, que f est bijective et que les dimensions de E et F sont finies et égales.

  • Si KF2 et LF2 (c'est-à-dire si K et L ont trois éléments ou plus), pour que f soit semi-affine (et donc affine si K = L = R), il faut et il suffit que, quels que soient les points alignés x, y et z de X, f(x), f(y) et f(z) soient des points alignés de Y.
  • Si K = L = F2 (donc si K et L ont deux éléments 0 et 1), pour que f soit semi-affine, il faut et il suffit que, quels que soient les droites parallèles D et D’ de X, f(D) et f(D ') soient des droites parallèles de Y (dans ce cas les droites ne sont autres que les paires de points, et donc trois points distincts ne peuvent être alignés).

Voici des variations du théorème fondamental de la géométrie affine.

Théorème. On suppose que K et L ont au moins trois éléments. Si l'image de f contient trois points non alignés de Y et si l'image par f de toute droite de X est une droite de Y ou est réduite à un point, alors f est semi-affine (et donc affine si K = L = R). Autre formulation : si l'image de f contient trois points non alignés de Y et si, quels que soient les points x et y de X, l'image par f de la variété affine de X engendrée par x et y est la variété affine de Y engendrée par f(x) et f(y), alors f est semi-affine.

Théorème. On suppose que K et L sont isomorphes, que K et L ont au moins trois éléments, que X et Y sont de dimensions finies (égales ou non) et que f est une surjection. Si, quels que soient les points alignés x, y et z de X, f(x), f(y) et f(z) sont des points alignés de Y, alors f est semi-affine.

Voir aussi

En géométrie projective, il y a un théorème analogue: le théorème fondamental de la géométrie projective.

Références

  • Marcel Berger, Géométrie, Nathan, 1990.
  • Jean Frenkel, Géométrie pour l'élève-professeur, Hermann, Paris, 1977.
  • Jean Fresnel, Méthodes modernes de géométrie, Hermann, Paris, 1996.
  • Jacqueline Lelong-Ferrand, Les fondements de la géométrie projective, Presses universitaires de France, Paris, 1985.
  • Patrice Tauvel, Géométrie, Dunod, Paris, 2005.

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème fondamental de la géométrie affine de Wikipédia en français (auteurs)

Игры ⚽ Нужно решить контрольную?

Regardez d'autres dictionnaires:

  • Théorème fondamental — En mathématiques, un théorème fondamental est un théorème essentiel à une branche et qui permet d établir de nouveaux théorèmes sans s appuyer sur des axiomes. Plusieurs de ces théorèmes doivent leur nom à la tradition et non à la branche qui l… …   Wikipédia en Français

  • Barycentre (géométrie affine) — Pour les articles homonymes, voir Barycentre. En géométrie affine, le barycentre de plusieurs points affectés de coefficients est un point annulant une certaine égalité vectorielle. Le calcul de barycentre est l outil fondamental de la géométrie… …   Wikipédia en Français

  • Barycentre (Géométrie Affine) — Pour les articles homonymes, voir Barycentre. En géométrie affine, le barycentre de plusieurs points affectés de coefficients est un point annulant une certaine égalité vectorielle. Le calcul de barycentre est l outil fondamental de la géométrie… …   Wikipédia en Français

  • Théorème de Desargues — dans un plan projectif : les deux triangles (non plats) ABC et A B C ont leurs sommets sur 3 droites distinctes p = (AA ) , q = (BB ) et r = (CC ) ; alors ces 3 droites sont concourantes (en S) si et seulement si les points P = (BC) ∩… …   Wikipédia en Français

  • Theoreme d'Hessenberg — Théorème d Hessenberg En géométrie projective, le théorème d’Hessenberg fait le lien entre le théorème de Pappus et le théorème de Desargues. On s’intéresse ici au théorème d Hessenberg dans sa version projective (il existe également une version… …   Wikipédia en Français

  • Théorème d'Hessenberg — En géométrie projective, le théorème d’Hessenberg fait le lien entre le théorème de Pappus et le théorème de Desargues. On s’intéresse ici au théorème d Hessenberg dans sa version projective (il existe également une version affine qui s en déduit …   Wikipédia en Français

  • Théorème de Hessenberg — Théorème d Hessenberg En géométrie projective, le théorème d’Hessenberg fait le lien entre le théorème de Pappus et le théorème de Desargues. On s’intéresse ici au théorème d Hessenberg dans sa version projective (il existe également une version… …   Wikipédia en Français

  • Théorème d’Hessenberg — Théorème d Hessenberg En géométrie projective, le théorème d’Hessenberg fait le lien entre le théorème de Pappus et le théorème de Desargues. On s’intéresse ici au théorème d Hessenberg dans sa version projective (il existe également une version… …   Wikipédia en Français

  • Théorème de Pappus —  Ne doit pas être confondu avec Théorème de Pappus Guldin. Le théorème de Pappus est un théorème de géométrie projective plane qui possède plusieurs déclinaisons en géométrie affine. En géométrie projective Il s énonce uniquement en termes d …   Wikipédia en Français

  • Géométrie projective — En mathématiques, la géométrie projective est le domaine de la géométrie qui modélise les notions intuitives de perspective et d horizon. Elle étudie les propriétés inchangées des figures par projection. Sommaire 1 Considérations historiques 2… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”