Théorème de shannon

Théorème de shannon

Théorème d'échantillonnage de Nyquist-Shannon

Le théorème de Nyquist-Shannon, nommé d'après Harry Nyquist et Claude Shannon, énonce que la fréquence d'échantillonnage d'un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce signal d'une forme analogique à une forme numérique. Ce théorème est à la base de la conversion numérique des signaux.

La meilleure illustration de l'application de ce théorème est la détermination de la fréquence d'échantillonnage d'un CD audio, qui est de 44,1 kHz. En effet, l'oreille humaine peut capter les sons jusqu'à 16 kHz, quelquefois jusqu'à 20 kHz. Il convient donc, lors de la conversion, d'échantillonner le signal audio à au moins 40 kHz. 44,1 kHz est la valeur normalisée par l'industrie.

Sommaire

Considérations élémentaires

Si on veut utiliser un signal échantillonné, il faut être sûr que celui-ci contienne toute l'information du signal analogique d'origine. Il est souvent commode de considérer celui-ci comme une somme de sinusoïdes (cf analyse spectrale). Or il est intuitivement évident qu'une perte d'information se produit si le pas d'échantillonnage est trop grand par comparaison avec les périodes en cause, la fréquence d'échantillonnage étant trop faible par rapport aux fréquences considérées.

Exemple echantillonnage de deux signaux.png

Soit un signal sinusoïdal d'amplitude a et de fréquence f :

x(t) = a \cos(2\pi f t)\,

En l'échantillonnant avec un pas T soit une fréquence 1/T on obtient la suite de valeurs numériques

x_n = a \cos(2\pi n f T)\,

Considérons maintenant le signal d'amplitude b et de fréquence 1/T - f :

\textstyle y(t) = b \cos\left(2\pi\left(\frac1T - f\right)t\right)

Une fois échantillonné à la même fréquence, il devient

\textstyle y_n = b\cos\left(2\pi n\left(\frac1T - f\right)T\right) = b \cos\left(2\pi n\left(1 - f T\right)\right)\,

La trigonométrie élémentaire conduit à

y_n = b \cos(2\pi n f T)\,

Ainsi, dans la somme xn + yn, il est impossible de distinguer ce qui appartient au signal de fréquence f et à celui de fréquence 1/T - f. Ce résultat conduit à l'effet de crènelage, repli de spectre ou encore aliasing, qui indique que l'on prend une sinusoïde pour une autre (alias).

Si la plus haute fréquence d'un signal est fM, la fréquence 1/T - fM ne doit pas appartenir au spectre du signal, ce qui conduit à l'inégalité :

\frac 1T > 2 f_M

Pour qu'un signal ne soit pas perturbé par l'échantillonnage, la fréquence d'échantillonnage doit être supérieure au double de la plus haute fréquence contenue dans le signal. Cette fréquence limite s'appelle la fréquence de Nyquist.

Précisions

Transformee Fourier signal continu.png

On peut interpréter le résultat précédent en considérant un signal transitoire x(t), donc muni d'une transformée de Fourier X(f).

Transformee Fourier signal correctement echantillonne.png

Considérons la fonction obtenue en multipliant le signal x(t) par un peigne de Dirac, somme de deltas d'intensité T distants de T.

x^*(t) = x(t) \delta_T (t)\,

Compte tenu de la propriété fondamentale du peigne de Dirac, la transformée de Fourier de x*(t) est l'approximation de la transformée de x(t) obtenue par la méthode des rectangles :

X^*(f) = T \sum_{n=-\infty}^{+\infty} x(n T) e^{- i n 2\pi f T}

En utilisant le développement en série de Fourier du peigne, cette transformée se calcule aussi sous la forme

X^*(f) = \int_{-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} e^{i 2\pi n t/T} x(t) e^{- i 2\pi f\mathrm dt}\mathrm dt

En regroupant les exponentielles et en échangeant les opérateurs, on obtient :

X^*(f) = \sum_{n=-\infty}^{+\infty} X(f - n/T)
Transformee Fourier signal incorrectement echantillonne.png

Le rapprochement des deux résultats montre que le calcul de la transformée d'un signal échantillonné au pas T par la méthode des rectangles donne la somme de la transformée vraie et de toutes les translatées de celle-ci avec un pas égal à la fréquence d'échantillonnage 1/T.

Toute l'information utile est contenue dans l'intervalle [-1/(2T), 1/(2T)].

Si les fréquences présentes dans le signal ne débordent pas de cet intervalle, c'est-à-dire si la fréquence d'échantillonnage est supérieure au double de la plus haute fréquence, on obtient la transformée vraie. Dans le cas contraire, les translatées voisines viennent se superposer. Ce phénomène est appelé "recouvrement du spectre"

Du fait de la symétrie, tout se passe comme si le spectre vrai était replié (l'énergie associée aux fréquences supérieures à la moitié de la fréquence d'échantillonnage est transférée en dessous de cette fréquence). Si on veut éviter le franglais on utilise en général le terme repliement de préférence à aliasing.

Ces résultats s'appliquent sans modification à un signal à variance finie.

Formule de Shannon

Puisque la transformée X*(f) du signal correctement échantillonné contient, dans l'intervalle [-½T,½T], la transformée du signal d'origine x(t), on peut reconstituer celui-ci en calculant la transformée inverse, l’intégration étant bornée à cet intervalle.

On obtient ainsi

x(t) = \sum_{n=-\infty}^{+\infty} x(n T) 
\frac{\sin\left(\frac\pi T(t - nT)\right)}{\frac\pi T(t - nT)}

Voir aussi

  • Portail de la physique Portail de la physique
Ce document provient de « Th%C3%A9or%C3%A8me d%27%C3%A9chantillonnage de Nyquist-Shannon ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème de shannon de Wikipédia en français (auteurs)

Игры ⚽ Нужен реферат?

Regardez d'autres dictionnaires:

  • Théorème de Shannon — Théorème d échantillonnage de Nyquist Shannon Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale… …   Wikipédia en Français

  • Théorème du codage de source — Le Théorème du codage de source (ou premier théorème de Shannon, ou moins usité en français, théorème de codage sans bruit) est un théorème énoncé par Claude Shannon en 1948, qui énonce la limite théorique pour la compression d une source. Le… …   Wikipédia en Français

  • Theoreme d'echantillonnage de Nyquist-Shannon — Théorème d échantillonnage de Nyquist Shannon Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale… …   Wikipédia en Français

  • Théorème d'échantillonnage de nyquist-shannon — Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce… …   Wikipédia en Français

  • Theoreme flot-max/coupe-min — Théorème flot max/coupe min Le théorème flot max/coupe min est un théorème de la théorie des graphes. Il généralise le théorème de König et le théorème de Hall (dans les graphes bipartis) et le théorème de Menger (dans les graphes quelconques).… …   Wikipédia en Français

  • Théorème flot-max/coupe-min — Le théorème flot max/coupe min est un théorème de la théorie des graphes. Il généralise le théorème de König et le théorème de Hall (dans les graphes bipartis) et le théorème de Menger (dans les graphes quelconques). Il révèle que le calcul d une …   Wikipédia en Français

  • Théorème d'échantillonnage de Nyquist-Shannon — Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce… …   Wikipédia en Français

  • Shannon — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sommaire 1 Nom commun 2 Mythologie 3 H …   Wikipédia en Français

  • Théorème de Masreliez — Le théorème de Masreliez est un algorithme récursif largement utilisé dans la technologie pour l estimation robuste et le filtre de Kalman étendu[1], nommé d après le physicien suédo américain, C. Johan Masreliez, qui est son auteur. Sommaire 1… …   Wikipédia en Français

  • Claude Shannon — Nom de naissance Claude Elwood Shannon Naissance 30 avril 1916 Petoskey, Michigan, États Unis Décès 24 février 2001 (à 84 ans) Medford, Massachusetts, États Unis …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”