Théorème d'échantillonnage de Nyquist-Shannon

Théorème d'échantillonnage de Nyquist-Shannon

Le théorème de Nyquist-Shannon, nommé d'après Harry Nyquist et Claude Shannon, énonce que la fréquence d'échantillonnage d'un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce signal d'une forme continue à une forme discrète (discontinue dans le temps). Ce théorème est à la base de la conversion analogique-numérique des signaux.

La meilleure illustration de l'application de ce théorème est la détermination de la fréquence d'échantillonnage d'un CD audio, qui est de 44,1 kHz. En effet, l'oreille humaine peut capter les sons jusqu'à 16 kHz, quelquefois jusqu'à 22 kHz. Il convient donc, lors de la conversion, d'échantillonner le signal audio à au moins 44 kHz. 44,1 kHz est la valeur normalisée par l'industrie.

Sommaire

Considérations élémentaires

Si on veut utiliser un signal échantillonné, il faut être sûr que celui-ci contienne toute l'information du signal analogique d'origine. Il est souvent commode de considérer celui-ci comme une somme de sinusoïdes (cf analyse spectrale). Or il est intuitivement évident qu'une perte d'information se produit si le pas d'échantillonnage est trop grand par comparaison avec les périodes en cause, la fréquence d'échantillonnage étant trop faible par rapport aux fréquences considérées.

Exemple echantillonnage de deux signaux.png

Soit un signal sinusoïdal d'amplitude a et de fréquence f :

x(t) = a \cos(2\pi f t)\,

En l'échantillonnant avec un pas T soit une fréquence 1 / T on obtient la suite de valeurs numériques

x_n = a \cos(2\pi n f T)\,

Considérons maintenant le signal d'amplitude b et de fréquence 1 / Tf :

\textstyle y(t) = b \cos\left(2\pi\left(\frac1T - f\right)t\right)

Une fois échantillonné à la même fréquence, il devient

\textstyle y_n = b\cos\left(2\pi n\left(\frac1T - f\right)T\right) = b \cos\left(2\pi n\left(1 - f T\right)\right)\,

La trigonométrie élémentaire conduit à

y_n = b \cos(2\pi n f T)\,

Ainsi, dans la somme xn + yn, il est impossible de distinguer ce qui appartient au signal de fréquence f et à celui de fréquence 1 / Tf. Ce résultat conduit à l'effet de crènelage, repli de spectre ou encore aliasing, qui indique que l'on prend une sinusoïde pour une autre (alias).

Si la plus haute fréquence d'un signal est fM, la fréquence 1 / TfM ne doit pas appartenir au spectre du signal, ce qui conduit à l'inégalité :

\frac 1T \geq 2 f_M

Pour qu'un signal ne soit pas perturbé par l'échantillonnage, la fréquence d'échantillonnage doit être supérieure au double de la plus haute fréquence contenue dans le signal. Cette fréquence limite s'appelle la fréquence de Nyquist.

Précisions

Transformee Fourier signal continu.png

On peut interpréter le résultat précédent en considérant un signal transitoire x(t), donc muni d'une transformée de Fourier X(f).

Transformee Fourier signal correctement echantillonne.png

Considérons la fonction obtenue en multipliant le signal x(t) par un peigne de Dirac, somme de deltas d'intensité T distants de T.

x^*(t) = T x(t) \cdot \delta_T (t)\,

la transformée de Fourier de x*(t) est la convolution de la TF de x(t) par la TF du peigne de dirac :

X^*(f) = X(f) \ast \sum_{n=-\infty}^{\infty} \delta(f - \frac{n}{T})

Le dirac étant l'élement neutre de la convolution, on obtient:

X^*(f) = \sum_{n=-\infty}^{+\infty} X(f - n/T)
Transformee Fourier signal incorrectement echantillonne.png

Le rapprochement des deux résultats montre que le calcul de la transformée d'un signal échantillonné au pas T par la méthode des rectangles donne la somme de la transformée vraie et de toutes les translatées de celle-ci avec un pas égal à la fréquence d'échantillonnage 1/T.

Toute l'information utile est contenue dans l'intervalle [-1/(2T), 1/(2T)].

Si les fréquences présentes dans le signal ne débordent pas de cet intervalle, c'est-à-dire si la fréquence d'échantillonnage est supérieure au double de la plus haute fréquence, on obtient la transformée vraie. Dans le cas contraire, les translatées voisines viennent se superposer. Ce phénomène est appelé "recouvrement du spectre"

Du fait de la symétrie, tout se passe comme si le spectre vrai était replié (l'énergie associée aux fréquences supérieures à la moitié de la fréquence d'échantillonnage est transférée en dessous de cette fréquence). Si on veut éviter le franglais on utilise en général le terme repliement de préférence à aliasing.

Ces résultats s'appliquent sans modification à un signal à variance finie.

Formule de Shannon

Puisque la transformée X*(f) du signal correctement échantillonné contient, dans l'intervalle [-½T,½T], la transformée du signal d'origine x(t), on peut reconstituer celui-ci en calculant la transformée inverse, l’intégration étant bornée à cet intervalle.

On obtient ainsi

x(t) = \sum_{n=-\infty}^{+\infty} x(n T) \cdot
\frac{\sin\left(\frac\pi T(t - nT)\right)}{\frac\pi T(t - nT)}

Voir aussi


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Théorème d'échantillonnage de Nyquist-Shannon de Wikipédia en français (auteurs)

Игры ⚽ Поможем решить контрольную работу

Regardez d'autres dictionnaires:

  • Theoreme d'echantillonnage de Nyquist-Shannon — Théorème d échantillonnage de Nyquist Shannon Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale… …   Wikipédia en Français

  • Théorème d'échantillonnage de nyquist-shannon — Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale contenue dans ce signal, afin de convertir ce… …   Wikipédia en Français

  • Théorème de Shannon — Théorème d échantillonnage de Nyquist Shannon Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale… …   Wikipédia en Français

  • Théorème de shannon — Théorème d échantillonnage de Nyquist Shannon Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale… …   Wikipédia en Français

  • Echantillonnage (signal) — Échantillonnage (signal) Pour les articles homonymes, voir Échantillonnage. L échantillonnage consiste à transformer un signal analogique (continu) en signal numérique (discret), en capturant des valeurs à intervalle de temps régulier (ici temps… …   Wikipédia en Français

  • Échantillonnage (signal) — Pour les articles homonymes, voir Échantillonnage. L échantillonnage consiste à transformer un signal analogique (continu) en signal numérique (discret), en capturant des valeurs à intervalle de temps régulier (ici temps est à prendre au sens… …   Wikipédia en Français

  • Nyquist — Harry Nyquist  Pour le diagramme correspondant, voir Diagramme de Nyquist. Harry Nyquist (pron. [nʏ:kvɪst], pas [naɪkwɪst]) (7 février 1889 4 avril 1976) a été un important contributeur à la théorie de l information et à… …   Wikipédia en Français

  • Shannon — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Sommaire 1 Nom commun 2 Mythologie 3 H …   Wikipédia en Français

  • Théorème de Masreliez — Le théorème de Masreliez est un algorithme récursif largement utilisé dans la technologie pour l estimation robuste et le filtre de Kalman étendu[1], nommé d après le physicien suédo américain, C. Johan Masreliez, qui est son auteur. Sommaire 1… …   Wikipédia en Français

  • Fréquence de Nyquist — Théorème d échantillonnage de Nyquist Shannon Le théorème de Nyquist Shannon, nommé d après Harry Nyquist et Claude Shannon, énonce que la fréquence d échantillonnage d un signal doit être égale ou supérieure au double de la fréquence maximale… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”