Potentiel magnétique

Potentiel magnétique

Potentiel vecteur du champ magnétique

Le potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n'y a pas de confusion possible, est une quantité physique assimilable à un vecteur intervenant en électromagnétisme. Elle n'est pas directement mesurable, mais sa présence est intimement liée à celle d'un champ électrique et/ou d'un champ magnétique.

Sommaire

Formule fondamentale

Le potentiel vecteur du champ magnétique est d'ordinaire introduit en conséquence des équations de Maxwell, qui stipulent que le champ magnétique B est de divergence nulle. L'analyse vectorielle indique qu'un champ vectoriel tridimensionnel de divergence nulle peut toujours s'exprimer sous la forme d'un rotationnel d'un champ de vecteur, noté A. On a ainsi

\boldsymbol B = \boldsymbol \nabla \wedge \boldsymbol A.

Par ailleurs, l'équation de Maxwell-Faraday relie les variations temporelles du champ magnétique aux variations spatiales du champ électrique (ce qui est à l'origine du phénomène d'induction électromagnétique) selon la formule

\boldsymbol \nabla \wedge \boldsymbol E = - \frac{\partial \boldsymbol B}{\partial t},

dont on déduit que

\boldsymbol \nabla \wedge (\boldsymbol E + \dot \boldsymbol A) = \boldsymbol 0.

L'analyse vectorielle indique alors que le champ électrique peut s'exprimer sous la forme de la somme de l'opposé de la dérivée temporelle du potentiel vecteur et d'un terme de rotationnel nul, terme que l'on peut exprimer sous la forme d'un gradient d'une quantité appelé dans ce contexte potentiel électrique et notée V :

\boldsymbol E = - \boldsymbol \nabla V - \dot \boldsymbol A.

À noter qu'au départ la relation entre A et B est une relation purement locale. Le problème de savoir si on peut définir globalement un potentiel-vecteur sur un espace donné conduit à devoir se poser des questions sur la cohomologie de cet espace, un concept issu de la géométrie différentielle.

Potentiel vecteur et invariance de jauge

Le potentiel vecteur et le potentiel électrique sont des entités plus fondamentales que les champs électrique et magnétique, mais ne sont pas définis de façon univoque. En effet, le rotationnel d'un gradient étant nul, on peut toujours ajouter un gradient à un potentiel vecteur A pour que celui-ci génère un même champ magnétique B. Une fois ceci fait, on obtient le même champ électrique en redéfinissant le potentiel électrique : si lùon modifie le potentiel vecteur A en

\boldsymbol A' = \boldsymbol A + \boldsymbol \nabla \phi,

alors le champ électrique E est donné par

\boldsymbol E = - \boldsymbol \nabla V + \boldsymbol \nabla \dot \phi - \boldsymbol A',

c'est-à-dire que l'on a

\boldsymbol E = - \boldsymbol \nabla V' - \boldsymbol A',

avec

\boldsymbol A' = \boldsymbol A + \boldsymbol \nabla \phi,
V' = V - \dot \phi.

Cette propriété d'indétermination du potentiel vecteur (et du potentiel électrique) est intimement lié à celle, plus intuitive de la conservation de la charge électrique et résulte d'une propriété mathématique générale appelée invariance de jauge.

Quelques jauges

Malgré l'indétermination intrinsèque du potentiel vecteur, il est souvent commode de l'utiliser pour résoudre les équations de l'électromagnétisme. Dans ce cas, il faut imposer (de façon artificielle) une contrainte supplémentaire sur le potentiel vecteur pour en sélectionner une configuration parmi les solutions physiquement équivalentes qui sont possible. On parle dans de cas d'un choix de jauge. On définit ainsi :

Même dans ce cas, les jauges ne sont pas toujours définies de façon univoque. Ainsi, la jauge de Coulomb admet-elle plusieurs configuration, car si A obéit pour le problème considéré à la contrainte de la jauge de Coulomb, alors il en est de même pour A' défini par

\boldsymbol A' = \boldsymbol A + \boldsymbol  \nabla \phi

si la fonction ϕ obéit à la contrainte supplémentaire

Δφ = 0,

ou Δ est l'opérateur laplacien. De même, la jauge de Lorenz est définie à une ambiguité près sur ϕ si celui-ci obéit à la contrainte supplémentaire

\Box \phi = 0,

\Box représente le d'alembertien.

Calcul du potentiel vecteur

En magnétostatique, la loi de Biot et Savart donne l'expression du champ magnétique en fonction des courants électrique présent :

\boldsymbol B (\boldsymbol r) = \frac{\mu_0}{4\pi}\int \frac{\boldsymbol j(\boldsymbol r') \wedge (\boldsymbol r - \boldsymbol r')}{|\boldsymbol r - \boldsymbol r'|^3}\; {\rm d} \boldsymbol r'.

Par ailleurs on sait que, vis-à-vis d'une région centrée autour du rayon vecteur r, on a :

\boldsymbol \nabla_{\boldsymbol  r} \wedge \frac {\boldsymbol j(\boldsymbol r')}{|\boldsymbol r - \boldsymbol r'|} = \frac{1}{|\boldsymbol  r - \boldsymbol r'|} \; \boldsymbol  \nabla_{\boldsymbol r} \wedge \boldsymbol j (\boldsymbol r') - \boldsymbol j(\boldsymbol r') \wedge \boldsymbol \nabla \left(\frac{1}{|\boldsymbol r - \boldsymbol r'|} \right)= - \boldsymbol  j(\boldsymbol r') \wedge \frac{\boldsymbol r - \boldsymbol r'}{|\boldsymbol r - \boldsymbol r'|^3}.

En utilisant cette relation le champ magnétique peut se réexprimer sous la forme :

\boldsymbol B (\boldsymbol r) = \frac{\mu_0}{4\pi}\int \boldsymbol \nabla_{\boldsymbol r} \wedge \left(\frac{\boldsymbol j(\boldsymbol r') }{|\boldsymbol r - \boldsymbol r'|} \right)\; {\rm d} \boldsymbol r'.

Dans cette formule, on peut sortir le rotationnel de l'intégrale, puisque celui-ci s'applique au rayon vecteur r, d'où

\boldsymbol B (\boldsymbol r) = \boldsymbol \nabla \wedge \left(\frac{\mu_0}{4\pi}\int \frac{\boldsymbol j(\boldsymbol r') }{|\boldsymbol r - \boldsymbol r'|}\; {\rm d} \boldsymbol r' \right).

D'après la définition du potentiel vecteur, on en déduit finalement que

\boldsymbol A (\boldsymbol r) = \frac{\mu_0}{4\pi}\int \frac{\boldsymbol j(\boldsymbol r') }{|\boldsymbol r - \boldsymbol r'|}\; {\rm d} \boldsymbol r',

une formule essentiellement identique à celle du potentiel électrique si l'on remplace les charges par les courants.

Voir aussi


  • Portail de la physique Portail de la physique
  • Portail de l’électricité et de l’électronique Portail de l’électricité et de l’électronique
Ce document provient de « Potentiel vecteur du champ magn%C3%A9tique ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Potentiel magnétique de Wikipédia en français (auteurs)

Игры ⚽ Нужна курсовая?

Regardez d'autres dictionnaires:

  • différence de potentiel magnétique — magnetinių potencialų skirtumas statusas T sritis Standartizacija ir metrologija apibrėžtis Apibrėžtį žr. priede. priedas( ai) Grafinis formatas atitikmenys: angl. magnetic potential difference vok. magnetische Potentialdifferenz, f rus. разность …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • différence de potentiel magnétique — magnetinių potencialų skirtumas statusas T sritis fizika atitikmenys: angl. magnetic potential difference vok. magnetische Potentialdifferenz, f rus. разность магнитных потенциалов, f pranc. différence de potentiel magnétique, f …   Fizikos terminų žodynas

  • potentiel — potentiel, ielle [ pɔtɑ̃sjɛl ] adj. et n. m. • 1534; °potencielXVe; lat. didact. potentialis, de potentia « puissance » I ♦ Adj. 1 ♦ Philos. ou didact. Qui existe en puissance (opposé à actuel).⇒ virtuel. Cour. Ressou …   Encyclopédie Universelle

  • Potentiel vecteur du champ magnetique — Potentiel vecteur du champ magnétique Le potentiel vecteur du champ magnétique, ou, plus simplement potentiel vecteur quand il n y a pas de confusion possible, est une quantité physique assimilable à un vecteur intervenant en électromagnétisme.… …   Wikipédia en Français

  • Potentiel coulombien — Potentiel électrique Le potentiel électrique est l une des grandeurs définissant l état électrique d un point de l espace. Son unité est le volt. Sommaire 1 Analogie 2 Mesure 3 Formules 3.1 Cas particulier …   Wikipédia en Français

  • Potentiel electrique — Potentiel électrique Le potentiel électrique est l une des grandeurs définissant l état électrique d un point de l espace. Son unité est le volt. Sommaire 1 Analogie 2 Mesure 3 Formules 3.1 Cas particulier …   Wikipédia en Français

  • Potentiel électrostatique — Potentiel électrique Le potentiel électrique est l une des grandeurs définissant l état électrique d un point de l espace. Son unité est le volt. Sommaire 1 Analogie 2 Mesure 3 Formules 3.1 Cas particulier …   Wikipédia en Français

  • Potentiel scalaire — Potentiel d un champ vectoriel Pour les articles homonymes, voir potentiel (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Potentiel vecteur — Potentiel d un champ vectoriel Pour les articles homonymes, voir potentiel (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Potentiel (homonymie) — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Le terme potentiel peut renvoyer : en mathématiques à : Théorie du potentiel en sciences physiques à la notion générale de potentiel d un champ… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”