- Algebre de Kac-Moody
-
Algèbre de Kac-Moody
En mathématiques, une algèbre de Kac-Moody est une algèbre de Lie, généralement de dimension infinie, pouvant être définie par des générateurs et des relations via une matrice de Cartan généralisée. Les algèbres de Kac-Moody tiennent leur nom de Victor Kac et de Robert Moody, qui les ont indépendamment découvert. Ces algèbres sont une généralisation des algèbres semi-simples de Lie de dimension finie, et de nombreuses propriétés liées à la structure des algèbres de Lie, notamment son système de racines, ses représentations irréductibles, ses liens avec les variétés de drapeaux ont des équivalents dans le système de Kac-Moody. Une classe d'algèbres de Kac-Moody appelée algèbre de Lie affine est particulièrement importante dans les mathématiques et la physique théorique, et plus spécifiquement dans les théories conforme des champs et des modèles exactement solubles. Kac démontra élégamment certaines identités combinatoires, les identités de Macdonald, en se basant sur la représentation théorique d'algèbres de Kac-Moody affines. Garland et Lepowski démontrèrent quant à eux que les identités de Rogers-Ramanujan pouvaient être dérivées de façon similaire.
Sommaire
Definition
Une algèbre de Kac-Moody est déterminée comme suit :
- Une matrice de Cartan généralisée de taille , C = (cij) de rang r.
- Un espace vectoriel sur de dimension 2n - r.
- Un ensemble de n vecteurs libres αi de et un ensemble de n vecteurs libres de l'espace dual associé à , tel que , . Les αi sont appelés coracines, tandis que les sont appelés racines.
L'algèbre de Kac-Moody est l'algèbre de Lie définie par les vecteurs générateurs ei et fi et les éléments de ainsi que les relations :
Où est la représentation adjointe de .
Une algèbre de Lie (de dimension infinie ou non) sur le corps des réels est également considérée comme une algèbre de Kac-Moody si sa complexification est une algèbre de Kac-Moody.
Interprétation
Soit une sous-algèbre de Cartan de l'algèbre de Kac-Moody.
Si g est un élément de l'algèbre de Kac-Moody tel que , où ω est un élément de , alors on dit que g a un poids ω. L'algèbre de Kac-Moody peut être diagonalisée en vecteurs propres de poids. La sous-algèbre de Cartan a un poids nul, ei a un poids et fi a un poids . Si le crochet de Lie de deux vecteurs propres est non nul, alors son poids est la somme de leurs poids. La condition signifie simplement que les sont des racines simples.
Types d'algèbres de Kac-Moody
La matrice de Cartan associée à l'algèbre de Kac-Moody peut être décomposée comme produit de deux matrices D et S où D est une matrice diagonale positive et S une matrice symétrique. La nature de S détermine le type de l'algèbre de Kac-Moody dont il est question :
- est une algèbre de Lie simple de dimension finie si S est définie positive
- est affine si S est semi-définie positive de corang 1
Il existe aussi une autre classe d'algèbre de Kac Moody appelée algèbres hyperboliques. S ne peut jamais être définie négative ou semi-définie négative puisque ses coefficient diagonaux sont positifs.
Ces types d'algèbres de Kac Moody sont également caractérisés par leurs diagrammes de Dynkin:
- on connait la liste exacte des diagrammes de Dynkin correspondant aux algèbres de Lie simples
- lorsque tout sous diagramme du diagramme de Dynkin de est le diagramme d'une algèbre de Lie simple, alors est affine
- lorsque tout sous diagramme du diagramme de Dynkin de est le diagramme d'une algèbre affine, alors est hyperbolique
Les algèbres affines sont les mieux connues des algèbres de Kac-Moody.References
- A. J. Wassermann, Comptes rendus de lectures sur les algèbres de Kac-Moody et de Virasoro
- V. Kac Infinite dimensional Lie algebras ISBN 0-521-46693-8
- Hazewinkel, Michiel, ed. (2001), "Kac–Moody algebra", (en) Encyclopaedia of Mathematics, Kluwer Academic Publishers, ISBN 978-1-55608-010-4
- V.G. Kac, Simple irreducible graded Lie algebras of finite growth Math. USSR Izv. , 2 (1968) pp. 1271–1311 Izv. Akad. Nauk USSR Ser. Mat. , 32 (1968) pp. 1923–1967
- R.V. Moody, A new class of Lie algebras J. of Algebra , 10 (1968) pp. 211–230
- Portail des mathématiques
Catégorie : Algèbre de Lie
Wikimedia Foundation. 2010.