Gottlob Frege

Gottlob Frege
Gottlob Frege
Philosophe allemand
Période Contemporaine
Young frege.jpg

Naissance 8 novembre 1848 (Wismar)
Décès 26 juillet 1925 (Bad Kleinen)
École/tradition Logicisme, précurseur de la philosophie analytique
Principaux intérêts Logique, arithmétique, géométrie, épistémologie
Idées remarquables Fonction, Idéographie, Dénotation
Œuvres principales Les Fondements de l'arithmétique ; Écrits logiques et philosophiques
Influencé par Leibniz, Kant
A influencé Russell, Wittgenstein, Carnap, Cercle de Vienne, Popper, Dummett, Searle et la majeure partie de la philosophie analytique

Friedrich Ludwig Gottlob Frege (8 novembre 1848 à Wismar ~ 26 juillet 1925 à Bad Kleinen), était un mathématicien, logicien et philosophe allemand.

Frege est l'un des plus grands logiciens depuis Aristote, Ockham et Leibniz. Il a créé la logique moderne et plus précisément le calcul propositionnel moderne, le calcul des prédicats. Il a en outre créé une langue artificielle (notée au moyen des symboles logiques qui a inspiré toutes les logiques postérieures), il a formalisé entièrement la logique et en a fait par là un véritable calcul logique.

Il est en outre l'un des plus importants partisans du logicisme. C'est à la suite de son ouvrage Grundgesetze der Arithmetik, où il tente de dériver l'arithmétique de la logique, que Russell lui fait parvenir le paradoxe qui porte son nom. Néanmoins Frege n'entendait nullement réduire le raisonnement mathématique à sa seule dimension logique. Son idéographie visait à associer sur la même page, et de manière toute explicite, le contenu mathématique (ligne horizontale de la page) et la structure logique (ligne verticale).

Sommaire

Biographie et politique

Gottlob Frege est le fils d'Alexander Frege et d'Augusta Bialloblotzky. Son père est professeur de mathématiques et directeur de lycée à Wismar.

Frege étudie à l'université d'Iéna avec Ernst Abbe, qui soutient sa carrière scientifique, et avec le philosophe Kuno Fischer avec lequel il a d'importants échanges.

En 1871, Frege étudie à l'université de Göttingen, où il soutient sa thèse de doctorat en 1873 sur une question de géométrie (Über eine geometrische Darstellung der imaginären Gebilde in der Ebene). Puis, il revient à Iéna où il soutient son habilitation sur le thème des méthodes de calcul (Rechnungsmethoden, die sich auf eine Erweiterung des Größenbegriffes gründen).

Il fait ensuite toute sa carrière à l'université d'Iéna en tant que privatdozent puis en tant que professeur.

En 1887 il épouse Magarete Lieseberg, qui meurt en 1904.

En 1902, Frege est éprouvé par la découverte du paradoxe de Russell. Déprimé, il ne publie plus que des travaux mineurs. En 1923, Frege abandonne le logicisme, qu'il a défendu sa vie durant, et cherche désormais une fondation des mathématiques sur la géométrie.

Ses derniers écrits dénotent ses diverses xénophobies, notamment sa haine du parlementarisme, des Français et des communistes, et déclare sa foi dans la politique d'Hitler. Ces notes écrites en 1924 (une année avant la mort de Frege) peuvent cependant difficilement être définitivement interprétés comme une approbation des crimes contre l'humanité que perpétra plus tard le Troisième Reich. Son cahier contient cependant un projet détaillé d'expulsion des Juifs, et son approbation du coup d’État (échoué) organisé par Hitler et Erich Ludendorff[1].

Le seul étudiant important de Frege fut Rudolf Carnap, qui a poursuivi son œuvre logique et l'a rendue célèbre par la suite.

Contribution en logique et en mathématiques

Article général : Idéographie
Raisons de l'idéographie : Que la science justifie un recours à l'idéographie

Apport de Frege aux mathématiques

L’apport de Frege aux mathématiques concerne entre autres :

  • la théorie de la démonstration et de la définition ;
  • et l’analyse des nombres ;

Éléments de base de sa logique

Frege a développé une méthode de formalisation de la pensée fondatrice de la logique moderne. Ces travaux ont notamment trait aux points suivants :

  • formalisation systématique ;
  • analyse des phrases complexes ;
  • analyse des quantificateurs ;
  • théorie de la démonstration et de la définition ;
  • analyse des nombres ;

Le développement d'une notation formelle de la pensée est une tentative de réaliser l'idée de Leibniz d'une langue caractéristique universelle. Cette notation est exposée en 1879, dans Begriffsschrift, puis en 1893, dans Grundgesetze der Arithmetik.

Dans sa logique, une expression complète est une expression signifiante, dénotant un objet :

  • les noms simples d'objet : par exemple, « 2 » ;
  • les noms complexes d'objet : « (2+2) » ;
  • les propositions.

Les deux derniers types d'expression contiennent des fonctions, par exemple, dans le nom complexe « (2)2 », « ( )2 » est la fonction, les parenthèses indiquant la place des arguments de la fonction. Sans ces arguments (de type simple ou complexe), la fonction est incomplète et s'appelle un concept.

L’objet « (2+2) » dénote le résultat de son application sur les arguments, à savoir « 4 » ; en revanche, les propositions (Frege écrit « concept ») dénotent des valeurs de vérité. Il y a deux valeurs de vérité :

  • le Vrai : « (2+2)=4 » dénote le Vrai ;
  • le Faux : « (2+2)=5 » dénote le Faux.

Dans cette conception, une prédication s'analyse comme une fonction.

Calcul des prédicats

Un prédicat est donc une fonction d'une ou plusieurs variables que ses arguments divisent en vrai ou en faux. La proposition : « Le soleil brille » signifie que l'objet dénoté par Le soleil tombe sous le concept signifié par brille. Le concept est noté B( ) ; Le soleil brille est noté B(s). Il y a également des fonctions à deux, trois, quatre… arguments : on note F(( ),( )), une fonction à deux arguments.

Philosophie du langage

Selon Frege, d'une part, la pensée est inséparable du langage, qui permet à l'attention de se libérer de l'immédiateté par des éléments sensibles, les signes; le langage libère la pensée comme la technique de navigation contre le vent libère du vent par le vent. Mais, d'autre part, les langages ordinaires pèchent par équivocité des signes, et aussi par le fait qu'ils ne sont pas calqués sur les lois de la pensée, mais plutôt sur la psychologie humaine. L'écriture constitue une étape importante dans la libération de la pensée rigoureuse; elle permet de s'appuyer sur des signes constants, et aussi de rapporter librement l'énoncé aux lois de la logique. Dans ces conditions, la première tâche de la logique sera d'édifier un langage logique aussi rigoureux que possible, où toute lacune dans l'exposé des raisons sera aperçue d'un coup d'oeil. (Que la science justifie le recours à une idéographie, article publié en 1882 dans le Zeitschrift für Philosophie und philosophische Kritik (81).)

Frege a développé une conception du langage à la suite de ses recherches logiques. Über Sinn und Bedeutung est l'article classique qui expose deux problèmes à propos de la signification des phrases, et où il montre que l'on doit distinguer sens et dénotation :

  • le problème du jugement d'identité : « a=b » est un jugement d'identité, dans lequel « a » et « b » dénotent des objets. « a=b » est vrai si l'objet « a » est identique à l'objet « b », en d’autres termes si a et b dénotent le même objet.
  • les attitudes propositionnelles.

Sens et dénotation

(Pour la critique de cette théorie par Russell, voir Description définie)

Frege distingue sens et dénotation ; la dénotation est l'objet auquel on fait référence, le sens est le mode de donation de la dénotation. Exemple :

  • « L'étoile du matin » et « l'étoile du soir » ont des sens différents mais la même dénotation (Vénus).
  • « L'étoile la plus éloignée de la terre » a un sens (Sinn) mais n'a pas de dénotation (Bedeutung).

Cette distinction, qui sera rejetée par Russell, a pour objet d'expliquer qu'une formule comme a=b ait une utilité, c'est-à-dire qu'elle ne se réduit pas à a=a. Nous apprenons par cette formule que deux concepts distincts renvoient à un seul et même objet. En effet le concept se dit d'un objet, mais ne se confond pas avec lui. Le cheval est en fait un certain objet que nous dénotons par sa propriété d'être un certain cheval. Il y a un cheval veut dire qu'il existe un x (objet dénoté), tel qu'il est un cheval (concept signifié). En effet, le langage désigne le plus souvent moins chaque objet par un nom propre que par une catégorie commune à plusieurs objets.

Notons que Frege explique qu'il ne faut pas psychologiser cette distinction. Le sens n'est nullement la représentation subjective que chacun introduit sous le concept. Il est rigoureux et universel. L'expression "2+2" a la même dénotation que "3+1", mais non la même signification. Elle ne renvoie pourtant en rien à quelque image subjective.

Influence

De son vivant, les articles de Frege furent soit refusés, soit négligés, tant par les logiciens que les philosophes. C'est Russell, qui le premier, reconnut l'importance de cette oeuvre.

L'influence de Frege fut double.

  1. Incontestablement, il est l’inventeur de la logique moderne, livrant ainsi un formidable outil aux mathématiques contemporaines.
  2. Il est un des pères de la philosophie analytique et a influencé par ses travaux Russell, Whitehead, Wittgenstein.

Enfin, le père de la phénoménologie, Husserl, critiqué âprement dans un article de Frege, et accusé de psychologisme, modifia ses conceptions.

Bibliographie

Œuvres de Frege

Littérature secondaire

  • Philippe de Rouilhan, Frege – Les paradoxes de la représentation, Éditions de Minuit, 1988
  • Mathieu Marion et Alain Voizard (dir.), Frege – Logique et philosophie, L’Harmattan, 1998
  • Pascal Engel, Identité et référence, la théorie des noms propres chez Frege et Kripke, Paris, Presses de l’École normale supérieure, 1985
  • (en) I. Angelelli, Studies on Gottlob Frege and Traditional Philosophy (Dordrecht, 1967).
  • J.-P. Belna, La notion de nombre chez Dedekind, Cantor, Frege : Théories, conceptions et philosophie, Paris, 1996
  • (en) W. Demopoulos (éd.), Frege's Philosophy of Mathematics, Cambridge (MA), 1995
  • (en) M. Dummett, Frege : philosophy of language, London, 1992
  • (en) M. Dummett, The Interpretation of Frege's Philosophy, London, 1981
  • (en) M. Dummett, Frege : philosophy of mathematics, London, 1995
  • (en) A. Kenny (en), Frege : An introduction to the founder of modern analytic philosophy, Oxford, 2000
  • (de) U. Kleemeier, Gottlob Frege : Kontext-Prinzip und Ontologie, Freiburg, 1997
  • (en) E. D. Klemke (éd.), Essays on Frege, 1968

Notes et références

  1. Roger Schmit, Recension du livre de Lothar Kreiser, Gottlob Frege : Leben-Werk-Zeit, Hamburg, Archives de philosophie, 2001 [lire en ligne] 

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Liens externes


Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Gottlob Frege de Wikipédia en français (auteurs)

Игры ⚽ Поможем написать курсовую

Regardez d'autres dictionnaires:

  • Gottlob Frege — (1878) Friedrich Ludwig Gottlob Frege (* 8. November 1848 in Wismar; † 26. Juli 1925 in Bad Kleinen) war ein deutscher Logiker, Mathematiker und Philosoph. Seine herausragende Leistung auf dem Gebiet der Logik besteht darin, als erster eine …   Deutsch Wikipedia

  • Gottlob Frege — cerca de 1879. Friedrich Ludwig Gottlob Frege (8 de noviembre de 1848 26 de julio de 1925) fue un matemático, lógico y filósofo alemán, padre de la lógica matemática y la filosofía analítica. Frege es ampliamente reconocido como el mayor lógico… …   Wikipedia Español

  • Gottlob Frege — Infobox Philosopher region = Western Philosophy era = 19th century philosophy, color = #B0C4DE image caption = Friedrich Ludwig Gottlob Frege name = Friedrich Ludwig Gottlob Frege birth = November 8, 1848 death = 26 July, 1925 school tradition =… …   Wikipedia

  • Gottlob Frege — Friedrich Ludwig Gottlob Frege (8 de noviembre de 1848 26 de julio de 1925) fue un matemático, lógico y filósofo alemán fundador de la moderna lógica matemática y la filosofía analítica. Frege es considerado el mayor lógico desde Aristóteles.… …   Enciclopedia Universal

  • Ludwig Gottlob Frege — Gottlob Frege Friedrich Ludwig Gottlob Frege (* 8. November 1848 in Wismar; † 26. Juli 1925 in Bad Kleinen) war ein deutscher Mathematiker, Logiker und Philosoph. Seine herausragende Leistung auf dem Gebiet der Logik besteht darin, als erster… …   Deutsch Wikipedia

  • Friedrich Ludwig Gottlob Frege — Gottlob Frege Gottlob Frege Philosophe allemand Période Contemporaine Naissance : 8 novembre 1848 (Wismar) Décès  …   Wikipédia en Français

  • Christian Gottlob Frege — (1715 1781) Christian Gottlob Frege (* 21. November 1715 in Lampertswalde; † 20. Mai 1781 in Leipzig) war ein bedeutender Leipziger Bankier und Handelsherr. Er hatte einen Sohn und einen Enkel jeweils gleichen Namens …   Deutsch Wikipedia

  • Frege — Gottlob Frege Gottlob Frege Philosophe allemand Période Contemporaine Naissance : 8 novembre 1848 (Wismar) Décès  …   Wikipédia en Français

  • Frege (Begriffsklärung) — Frege ist der Name von Andreas Frege (* 1962), bekannt als Campino, Sänger von Die Toten Hosen Christian Ferdinand Frege (1780 1821), deutscher Bankier und Kaufmann Élodie Frégé (* 1982), französische Sängerin Gottlob Frege (1848−1925), deutscher …   Deutsch Wikipedia

  • Frege — oder Frégé ist der Familienname folgender Personen: Andreas Frege (* 1962), bekannt als Campino, deutscher Rocksänger Arnold Woldemar von Frege Weltzien (1841–1916), deutscher Rittergutsbesitzer und Politiker, MdR, MdL Christian Ferdinand Frege… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”