Fonction affine (mathématiques élémentaires)

Fonction affine (mathématiques élémentaires)

Fonction affine

En mathématiques élémentaires, une fonction affine est une fonction de la variable réelle dont la représentation graphique est une droite. C'est une fonction polynôme de degré inférieur ou égal à 1. Elle est de la forme :

 f\colon \mathbb{R}\to\mathbb{R}

x \mapsto a\times x + b avec a et b des nombres réels fixés.

Dans l'expression ci-dessus, a et b sont des constantes et x est la variable.

La constante a est appelée coefficient directeur et b ordonnée à l'origine.

Si a est nul, alors la fonction est constante.

Si b est nul alors la fonction est linéaire et sa droite représentative passe par l'origine.

Sommaire

Propriété caractéristique

Une fonction affine est caractérisée par le fait que son taux d'accroissement est constant. En effet, si x₁ et x₂ sont deux réels, l'accroissement f(x₁) − f(x₂) est proportionnel à x₁ − x₂, comme le donne l’égalité :

f(x₁) − f(x₂) = a (x₁ − x₂).

Cette propriété donne alors un outil pour déterminer le coefficient a :

a = \frac{f(x_1) - f(x_2)} {x_1 - x_2} si x₁ ≠ x₂.

Par conséquent, la dérivée d'une fonction affine est une fonction constante : le coefficient directeur de la fonction affine.

L'ordonnée à l'origine b peut se calculer de la manière suivante :

b= \frac{ x_2 \times f(x_1) - x_1\times f(x_2)  }{ x_2-x_1 } si x₁ ≠ x₂.

Exemples

On rencontre quelques exemples de fonctions affines dans

  • les abonnements téléphoniques. Le prix de l'abonnement mensuel est A et le prix d'une communication à la minute est de 0,10 €/min. La facture téléphonique est alors une fonction affine du nombre x de minutes de communication dans le mois :
f\colon x \mapsto A + 0,1\times x
  • La longueur d'un ressort. Si au repos le ressort a une longueur L₀ et si sa raideur est k, alors la longueur du ressort est une fonction affine de la force appliquée (loi de Hooke).
L\colon f \mapsto L_0 + \frac{f}{k}
Dans ce cas, le coefficient directeur est 1/k et l'ordonnée à l'origine L₀.

Représentation graphique

Linear functions2.PNG

La représentation graphique d'une fonction affine est une droite dont l'équation est

y = ax + b \,

La droite coupe l'axe des ordonnées pour y = b (d'où le nom : ordonnée à l'origine). Lorsque b est égal à 0, la droite passe par l'origine du repère cartésien.

La droite a pour pente ou coefficient directeur le réel a. Si a>0, la fonction affine est croissante (la droite « monte ») et si a<0, elle est décroissante (la droite « descend »). Par un processus analogue à celui vu pour la fonction linéaire, un déplacement d’un carreau en abscisse induit un déplacement de a carreaux en ordonnée, si le repère est orthonormé.

Détermination de a et b

Si M(x₁,y₁) et N(x₂,y₂) sont deux points appartenant à la droite d'équation y = ax + b, alors on a :

a =  \frac{y_2-y_1}{x_2-x_1}
b = y_1 - ax_1  = y_2 - ax_2 \,

Médias

Voir aussi

  • Portail des mathématiques Portail des mathématiques
Ce document provient de « Fonction affine ».

Wikimedia Foundation. 2010.

Contenu soumis à la licence CC-BY-SA. Source : Article Fonction affine (mathématiques élémentaires) de Wikipédia en français (auteurs)

Игры ⚽ Нужно сделать НИР?

Regardez d'autres dictionnaires:

  • Fonction Polynôme (Mathématiques Élémentaires) — Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction polynome (mathematiques elementaires) — Fonction polynôme (mathématiques élémentaires) Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction linéaire (mathématiques élémentaires) — Fonction linéaire Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction carré (mathématiques élémentaires) — Fonction carré Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction polynôme (mathématiques élémentaires) — En mathématiques élémentaires, une fonction polynôme est une somme de fonctions de la forme La fonction fk est appelée fonction monôme de degré k. On dit donc qu une fonction polynôme est une somme de fonctions monômes. En général, les fonctions… …   Wikipédia en Français

  • Fonction logarithme (mathématiques élémentaires) — Logarithme naturel Le logarithme naturel ou logarithme népérien, est, en mathématiques, le logarithme de base e. C est la réciproque de la fonction exponentielle de base e. C est la primitive de la fonction inverse définie sur et qui s annule en… …   Wikipédia en Français

  • Fonction (mathématiques élémentaires) — Pour les articles homonymes, voir Fonction. En mathématiques élémentaires, la plupart des fonctions rencontrées sont des fonctions numériques, mais la notion de fonction ne se limite pas à celle ci. L article qui suit présente quelques règles à… …   Wikipédia en Français

  • Fonction Affine Par Morceaux — Cet article fait partie de la série Mathématiques élémentaires Algèbre Logique Arithmétique Probabilités …   Wikipédia en Français

  • Fonction Affine — En mathématiques élémentaires, une fonction affine est une fonction de la variable réelle dont la représentation graphique est une droite. C est une fonction polynôme de degré inférieur ou égal à 1. Elle est de la forme : avec a et b des… …   Wikipédia en Français

  • Fonction affine par morceaux —  Ne pas confondre avec la notion d application linéaire par morceaux en géométrie. En mathématiques, une fonction affine par morceaux est une fonction définie sur une réunion d intervalles réels et dont la restriction à chacun de ces… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”